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Abstract

Combining elements of biology, chemistry, physics, and medicine, the science of human physiology is complex and multifaceted.
In this report, we offer a broad and multiscale perspective on key developments and challenges in visualization for physiology.
Our literature search process combined standard methods with a state-of-the-art visual analysis search tool to identify surveys
and representative individual approaches for physiology. Our resulting taxonomy sorts literature on two levels. The first level
categorizes literature according to organizational complexity and ranges from molecule to organ. A second level identifies any
of three high-level visualization tasks within a given work: exploration, analysis, and communication. The findings of this report
may be used by visualization researchers to understand the overarching trends, challenges, and opportunities in visualization
for physiology and to provide a foundation for discussion and future research directions in this area.

CCS Concepts

* Applied computing — Life and medical sciences; « Human-centered computing — Visualization;

1. Introduction

Human physiology describes the functions and mechanisms of the
human body that make it a living being. Forming the link between
the basic sciences (biology, chemistry, and physics) and medicine,
human physiology is multiscale in that it integrates the individual
functions of molecules, cells, tissues, and organs into a whole or-
ganism [HG11]. Physiology is an important aspect of systems biol-
ogy, which has been characterized as an approach to understanding
multiscale interactions in a biological system [KN09]. While sys-
tems biology tends toward data-driven and quantitative methods,
an integrative physiology approach emphasizes concepts through
experiments and observation across multiple scales [Gol19]. The
multiscale nature of physiology allows us to, for example, link
how signaling events at a molecular level lead to the normal, i.e.,
healthy, contraction of cardiac muscle in a normal heartbeat. An
understanding of the normal processes and functions of the body
allows us to recognize those that are abnormal, such as in atrial fib-
rillation, a heart problem where the upper chambers of the heart do
not follow a regular beating pattern. With recent advances in hard-
ware and software, as well as in experimental and imaging modal-
ities, it is now possible to model many of these processes across
several scales. Consequently, it is time for a discussion of visual-
ization tasks and techniques for multiscale physiology. This survey
provides a broad overview of common approaches and highlights
research opportunities in visualization for physiology across multi-
ple scales.
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Modern clinical workflows involve a battery of tests and imag-
ing protocols related to physiology. These are used to guide ther-
apy, monitor disease progression or treatment response, and iden-
tify new biomarkers for medical research. Improved technology
and hardware capture an unprecedented volume and diversity of
data through models and simulations, e.g., advanced numerical
simulations of blood flow, as well as through various acquisi-
tion techniques, e.g., fluorescence lifetime imaging microscopy
(FLIM). Data range from 2D to 3D images, from static to time-
dependent, from scalar to vector to tensor fields, and are often
multivariate. The visualized physiological processes range spatially
from nanometers to full body length and temporally from femto-
/nanoseconds up to hours, months, and, in some cases, even years,
as shown in Fig. 1. However, these data are often specific to a par-
ticular and relatively narrow spatio-temporal scale, and establish-
ing links between these multimodal data types from the nano- to
macroscale has been described as a grand challenge for many years
from the perspective of systems biology [OGF*10b; ODo21], vi-
sualization [OYBH15; GSG*21], and in a multidisciplinary 2018
Dagstuhl Seminar [AGMNI18]. Linking these data requires multi-
disciplinary teams to develop analytical models and visualization
approaches that can bridge the range of spatial and temporal scales.
The Physiome/Virtual Physiological Human and affiliated subpro-
jects [ABBCO5; Hun06; FBC*08; TCA*11; VH16] have aimed to
model processes that range from the molecular to organ scales, and
beyond, to understand the multiscale interplay of physiology. The
National Institutes of Health’s Human BioMolecular Atlas Pro-
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gram (HuBMAP) aims to comprehensively map the human body
at single-cell resolution from both a structural and functional per-
spective [Con19]. Numerous works have blossomed from these ini-
tiatives, such as OpenCMISS-Zinc [BBB*11], a library for building
multiscale models and visualizations of physiological processes.

Despite the wealth of collected and simulated data for physiol-
ogy, not all of this information can be, or is optimally, visualized
through data-driven means. Hand-crafted medical illustrations are
an alternative or supplement to data-driven visualization for rep-
resenting physiology. Illustration remains ubiquitous when com-
municating information to a broad audience where simplification
and abstraction of concepts are essential [GJ07; HG11; RMW14;
SSHT14; JH14]. More generally, illustrations are invaluable in
communicating abstract concepts, theories, and models. In this
sense, illustration can provide a source of inspiration for abstrac-
tion in data-driven visualization. Paired with computer-supported
solutions, an illustration can be brought to life through interactiv-
ity and adaptability to different scenarios. However, the time and
labor cost for creating such illustrations prevents their use for, e.g.,
patient-specific data visualization. Throughout this report, we high-
light select illustrative works to demonstrate opportunities where
illustration can inspire or augment data-driven approaches.

Physiology has received extensive attention from the visualiza-
tion community but in a fragmented, unevenly distributed form
across subtopics, data sources, and visualization techniques. Few
of these works extend their focus beyond one or two scales, e.g.,
only molecular [KKF*17], molecular and cellular [GOF20], or or-
gan [LSBP18]. This paints a limited picture of the true multiscale
nature of physiology. Similarly restricted in scope are surveys on
a particular data type, e.g., PC-MRI by Kohler et al. [KBvP*17].
Technique surveys, such as by Bach et al. [BDA*17] on space-time
cubes, McGee et al. [MGM*19] on multilayer network visualiza-
tion, or Preim et al. [PM20] on medical animation, may span mul-
tiple scales, but physiology is often only one application area of
many under discussion and is not the primary focus. Still others
have explored the multiscale challenges in visualizing biomedical
data from a high-level perspective [AMM*07; KH12; MMC*12;
VRFW14; CJS*21], though without a specific focus on physiol-
ogy. While our survey does not go into the level of detail that these
surveys visit for their respective areas, the novelty of our work is in
presenting a unified overview across multiple scales. We do so by
discussing the coverage of these surveys alongside representative
individual works that contribute to the same scale. We intend this
report as an introductory resource for the space of challenges and
opportunities for visualization research applied to physiology. Our
framing for the work we survey additionally provides a different
perspective than related work. We embed each article in a spatio-
temporal context and draw from Brehmer & Munzner [BM13] to
discuss its contribution according to the high-level user task(s) that
it addresses.

Perhaps closest to our survey in terms of the scales of biological
organization covered, Secrier & Schneider [SS14] discuss general
visualization techniques from the bioinformatics domain for phys-
iology from the molecular to population scale, but this review is
brief and high-level. O’Donoghue et al. [OBC*18] review the use
of omics and imaging data in biomedical research from molecule to
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Figure 1: The general spatial and temporal ranges of human phys-
iology, partitioned according to scale. Bold text indicates areas of
focus in this survey, with example processes labeled in each scale.

population level for the primary purpose of exploration. However,
their discussion is from a systems biology and bioinformatics per-
spective and mainly focuses on the visualization of molecular data
to understand multiscale physiology. Our work covers a broader set
of data types and a wider range of physiological processes.

To our knowledge, this work is the first of its kind to broadly
overview the space of visualization for physiology that covers a
scope similar to Lipsa et al.’s survey of visualization for the phys-
ical sciences domain (astronomy, chemistry, etc.) [LLC*12]. Our
main contributions include:

e This is the first literature survey paper of its kind that provides
a view into mature and open opportunities in visualization re-
search for physiology. Our work surveys both within and beyond
the core visualization venues.

e We focus the content of our survey on physiology topics that are
highly-researched and cited both within the visualization com-
munity and in related physiology domains.

e We introduce a novel taxonomy that addresses these differ-
ent topic areas and their respective opportunities by embedding
works within a spatio-temporal context according to the high-
level visualization task that they address.

In the following, we provide a brief background on physiology in
Sec. 2, followed by a discussion of our survey methodology (Sec. 3)
and classification structure (Sec. 4). Sections 5-8 are each dedi-
cated to a spatio-temporal scale in our taxonomy, in order of in-
creasing biological complexity. In each section, we first introduce
the necessary background information and relevance of the physi-
ological processes discussed at the given scale. We then provide an
overview of visualization conventions and trends that we observe
in the related literature according to task. A brief discussion of the
mature and open challenges in visualization concludes each scale
before transitioning to the next section. Fig. 2 provides an overview
of our organizational approach for these sections. Readers inter-
ested in a specific topic, e.g., molecular pathway visualization for
exploration, may easily navigate to the part of the report that is
most relevant to their interests and needs. Section 9 provides an
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Figure 2: Our approach for Sections 5-8 organizes physiology
topic areas in order of increasing spatio-temporal scale, with de-
tailed per-scale and per-process points for each topic area (when
relevant). Task categorization: E = exploration, A = analysis, and
C = communication.

overview of true multiscale visualizations uncovered in our search
and leads into a discussion of the challenges and research outlook
on visualization opportunities for physiology (Sec. 10-12).

2. Physiology Background

Normal human physiology requires a careful balancing act, known
as homeostasis, of numerous processes that occur over a broad span
of time and space, as shown in Fig. 1. The smallest entity in the
human body with the functional characteristics to sustain life in-
dependently is the cell. The cell itself contains molecules, such as
water and ions, and organic molecules, such as proteins, that par-
ticipate in processes necessary for its survival. Genes are the basic
unit of heredity in cells that are made up of DNA and which en-
code the synthesis of RNA, which directs protein synthesis. Genes,
proteins, and other molecules interact in sequences of reactions and
interactions that are described as pathways. These pathways form
networks and contribute to specific cellular functions. Molecular
structures fall generally in the range of nanometers, and molecule-
scale processes over a broad temporal range from femtoseconds,
e.g., bond vibration between atoms in a molecule, to seconds,
e.g., global motions or reaction sequences in a molecular path-
way [HKO07], to minutes and hours in the case of pathways involved
in metabolism, gene expression, and signal transduction [ASP*18].

Human and other eukaryotic cells contain specialized cellular
structures called organelles that participate in and facilitate the
molecular pathways that keep the cell functioning. The mitochon-
drion is one type of organelle known as the energy powerhouse of
the cell, while the nucleus is another organelle that provides the
housing for our genes. A cell has the ability to communicate and
exchange nutrients with its environment through its semipermeable
membrane. This membrane contains specialized molecules, known
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as receptors, as well as channels and other structures that facili-
tate communication and exchange. Cell-scale processes relate to
cells that average in the range of tens of microns in size, and with a
temporal range of milliseconds, e.g., action potential generation, to
minutes, e.g., mitosis, to a day for a complete cell cycle in humans.

Human cells differentiate into specialized cells with shared prop-
erties that group together to form tissue, which is classified into
four different types: muscle, epithelial, connective, and nerve tis-
sue. The physiological properties of these different tissues reflect
the function that they serve. Cardiac muscle tissue, for instance,
is responsible for the periodic contraction of the heart. Skeletal
muscle tissue moves our limbs, while smooth muscle tissue moves
food through the digestive system. Abnormal tissues occur where
the comprising cells take on different characteristics than in nor-
mal tissue. For example, cancerous tumors have completely differ-
ent tissue features than the surrounding tissue in which they occur.
Tissue-scale processes span hundreds of microns to millimeters
and temporally range from milliseconds, e.g., signal propagation,
to weeks or even months, in the case of tissue growth and develop-
ment.

Organs are composed of different types of tissue and perform
major physiological processes according to their location, form,
and composition. For example, one of the functions of the heart is
to pump blood that contains life-giving oxygen and nutrients to the
body’s cells. Organ-scale processes that we consider in this report
tend to fall within a narrow spatio-temporal window: organs like the
heart measure in the range of centimeters, and the temporal range of
a complete heartbeat or a complete breath cycle is in the range of
seconds. Organs with similar functions are grouped into systems.
For example, the cardiovascular system consists of the heart and
blood vessels that are responsible, among other tasks, for carrying
oxygen and nutrients to the body’s cells. Our organ systems are in-
terdependent. The cardiovascular system cannot function without
the respiratory system, which includes the lungs, because the lungs
handle blood re-oxygenation. The healthy functioning of an organ-
ism is dependent upon the systems of the body working in concert.

3. Scope and Methodology

This survey sketches out trends and opportunities in visualization
for physiology across multiple scales, with an emphasis on human
physiology. Fig. 3 provides an overview of our methodology.

Thematic Topics in Physiology. We restrict our survey to timely,
highly-cited thematic areas in human physiology to ensure that our
survey presents a relevant research agenda. For this, we used Web
of Science’s “hot papers” and “highly cited” filters with the key-
word “physiology.” A “hot paper” is any paper published in the
past two years that has received enough citations to rank in the top
0.1% of papers in its field. A “highly cited” paper ranks in the top
1% of cited papers for its field and publication year. To get a sense
of the diversity of topics, we took the top 20 papers from each of
these filters and excluded works that did not relate to humans or
other mammals. We keyed these papers to topical area of physiol-
ogy, e.g., molecular pathways or heart function, following standard
medical physiology textbooks [HG11]. For a complete list of these
papers and their topical areas, we refer the reader to Tables 1 and 2
in the supplementary materials.



Garrison et al. / Trends & Opportunities in Visualization for Physiology:A Multiscale Overview

PHYSIOLOGY

~_

Key domain topics «—— Web of Science
*to seed/prioritize search - “hot” papers
| - "highly cited” papers

v v

“Traditional” literature search « > vitaLITy literature discovery

v v v v

Keywords  Citation trail UMAP vis.  Similarity search

[topic] + [visual*] il
A e
g : s i 4 Dlj
) 2 ‘ : 2 D D
e
| Collate papers - |
|

Zotero Reference Manager

Filter and sort papers: [1] Identify spatio-temporal scale
[2] Identify key visualization task(s)

Survey papers
Summarize solutions & ¢ )
challenges Localize each paper
in visual taxonomy

Molecule Cell Tissue Organ

VANWARVAN

Figure 3: Our literature search process included both tradi-
tional search methodologies and vitaLITy [NKWW21]. VitaLITy’s
UMAP visualization allowed us to identify two main groupings of
physiology-related visualization literature: (A) contains molecular-
scale visualization literature, while (B) contains cell-, tissue-, and
organ-scale works.

Search Criteria. Our survey focuses on visualization research for
understanding physiology. We excluded pure method papers, mean-
ing that the visualization literature we included must have a clear
discussion of the domain science as a possible application for the
proposed method. We also excluded works where the main visual-
ization goal is to understand structure, although we included lim-
ited examples of instances where a physiological process is used
to visualize a structure, e.g., 4D PC-MRI data to describe vessel
boundaries [BKG*16]. We focused primarily on input data that is
either itself dynamic, or is being used to capture snapshots of a
dynamic process. We excluded purely longitudinal studies. We
limited our search and discussion of research in areas that have
already been well-covered in visualization and looked more com-
prehensively in less well-covered areas. In summary, we included
application-oriented papers that center around a key topic area we
identified from timely and highly-cited physiology research and
that apply visualization in a novel way for the topic domain.

We focused our literature search on core visualization publica-
tion venues: IEEE TVCG, CGF, C&G, BioVis, VIZBI, and VCBM.

30
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Figure 4: Distribution of papers (excluding surveys) according to
publication year.

The domain sciences may adapt visualization techniques in a novel
way to interpret their data. We did not extensively review work
published in domain-specific venues, but included a selection of
works relevant to our included physiology subtopics to show visu-
alization’s use from this perspective. These domain-specific papers
contributed to approximately 46% of the total literature collected.

Search Process. We conducted our initial search using a combina-
tion of Google Scholar, PubMed, and IEEE Xplore based on key-
word search [physiology topic] AND visual*. The literature search
was divided between two coauthors.

We used vitaLITy [NKWW?21] to complement our search, a re-
cent visual analysis tool that allows for serendipitous discovery of
academic literature. The vital.ITy database at the time of this writ-
ing consists of 59,000 literature items from 38 computer science
venues that include our core venues listed above. These are search-
able in a standard table that includes paper title, abstract, keywords,
and authors, as well as a similarity search and a 2D UMAP visual-
ization of the embedding space for the entire collection. For details
on these tool features, we refer to Narechania et al. [NKWW21].
In the UMAP visualization, we identified two main groupings of
literature, shown in Fig. 3, that helped focus our search: (A) groups
works for visualizing molecule-scale processes: molecular dynam-
ics, interactions, and pathways, while (B) includes works for vi-
sualizing cell-, tissue-, and organ-scale processes. Within each of
these groupings, we searched for existing surveys and state-of-the-
art reports to identify saturated topics. For example, since a num-
ber of reports have been written on visualizing different topics at
the molecular scale, we devote less space to discussing this scale
in our work and focus more comprehensively on scales and physi-
ology topics with less coverage. UMAP exploration also helped us
to identify relevant individual papers. We used works found in vi-
taL.ITy to seed our more traditional search approach and vice versa.
This allowed us to perform a more complete literature search that
accounted for terminology differences between domains.

Refining Process. In a second detailed pass of our collected works,
we reviewed titles, abstracts, and figures to determine topical fit for
our survey. At this stage, we used the publication year as a sec-
ondary check for our search coverage. If necessary, we revisited
vitaLITy for topic areas that had a publication year gap and resam-
pled papers from this time frame.
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Figure 5: Distribution of literature by spatio-temporal scale, excluding surveys. Left: Literature are sorted by molecule, cell, tissue, and
organ scales. This chart counts literature only once, according to the scale to which they contribute most. Right: Works are visualized in
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vertical axis describes spatial scale in units 10" meters. The dark region at the upper center indicates an abundance of works to visualize
organ-scale physiology over the range of seconds, e.g., one heartbeat. The dark region at the right corresponds to works visualizing gene

expression data.

Collection Summary. Our complete literature set includes 366
works, 61 of which survey or provide an outlook on an aspect of
physiological data visualization. Approximately !/3 of these works
have been published in the last five years, with 2/3 of the total
set published in the last ten years. Fig. 4 shows the distribution
of works by publication year. The peak in publications in 2010
is a point we discuss in Sec. 10. Following literature collection,
we classified all papers according to a two-level taxonomy to help
identify challenges and opportunities in this domain. Due to limita-
tions in space, we discuss a subset of these works in this paper, with
the full library available in supplementary material and at https:
//lauragarrison87.github.io/star.web/vis_tool.

4. Taxonomy and Overview

Physiology spans the basic sciences and medicine, requires diverse
domain knowledge, uses myriad data types, and employs a wide
range of visualization techniques. Classification by domain, e.g.,
biology, chemistry, physics, or medicine, may seem the most ob-
vious approach. However, these sciences are tied into each process
and are difficult to classify separately, especially at the molecular
scale. Molecular reactions are dictated by biology, chemistry, and
physics and are core to disease diagnosis in medicine. In addition,
different domains often adopt slightly different terminologies and
classification systems. For example, biology distinguishes between
gene, protein, tissue, organ, system, and body, while neuroscience
follows a neurochemical, neuronal, region/network, and brain clas-
sification scale. This creates more confusion when organizing liter-
ature according to domain.

Although classification by data source may feel most natural in
the context of the visualization pipeline, this does not provide a
unified axis for the scales we survey. Simulations and models may
span the molecule to organ scale but tend to be heavily focused
on particular topics, e.g., heart function [ANL*16] or lung func-
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tion [KBV*15]. While new imaging technologies, such as hier-
archical phase-contrast tomography that maps organ to cell level,
have come closer to realizing this possibility [WTW#*21], no unify-
ing technology yet bridges from the molecule up to the organ scale
from a general physiological perspective.

4.1. Spatio-Temporal Organization

To minimize semantic collisions or confusion, we classify litera-
ture into scales along a spatio-temporal axis that is roughly dis-
cretized according to biological complexity: molecule, cell, tissue,
and organ. This discretization is inspired by the organization of
physiology textbooks [HG11]. Fig. 5 (left) shows the distribution
of non-survey papers we collected that are categorized according
to this scale. Works that span multiple scales are counted once for
each scale, e.g., a work that we classify as both molecule and cell
scale is counted in both the molecule and cell groupings.

We bundle temporality into this scale discretization based on the
fact that, as structures increase in physical size, they tend to be
involved in more biologically-complex processes that take more
time to complete. This relationship between increased structural
size/complexity and time has been discussed elsewhere in different
domain contexts [SPW*08; SS14; DMRM17; GM17]. We can ob-
serve this phenomenon in Fig. 5 (right), which represents collected
works classified in a range according to the scale that the input data
spatially and temporally resolve to and up to the spatial and tem-
poral scale of the structure and process of interest, e.g., the whole
brain. For example, while EEG measures neural activity, we cannot
visualize individual neurons with this modality, and that is not the
intent of conducting these types of studies. Visualizations of EEG
data fall in the organ scale. The relationship between space and time
is not perfectly linear, as reflected by the dark groupings in the up-
per center and right regions of the chart. The upper part corresponds
to organ-scale processes that occur over the range of seconds, such
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Figure 6: Left: Distribution of literature according to scale and high-level task, the latter of which is adapted from Brehmer & Mun-
zner [BM13]. Right: Many visualization approaches support a combination of exploratory, analysis, and communication task(s). Darkness
and size dually encode the number of works that are categorized with a given task combination within each triangle.

as a heartbeat or a full breath cycle, while the right part corresponds
to the time for the expression of a single gene [MIM*10].

Our classification system does not formally extend beyond the
organ scale for a few reasons. First, restricting the scales we ex-
amine keeps the scope of this survey manageable. In addition, our
preliminary searches found limited visualization research that ex-
ists purely at the system— or organism-level, and the tasks and vi-
sualization techniques implemented are similar to those observed
at the organ scale. We briefly review examples of works beyond the
organ scale, as well as selected works that use true multiscale ap-
proaches, where the visualization aims to facilitate a task at three
or more scales, in Sec. 9.

Although an enormous range of physiological processes occur
at all scales of the body, we focus our survey on a few categories
of processes at each scale that are timely for the physiology do-
main. Processes occurring at the molecule scale include molecular
dynamics, e.g., the motion of atoms and molecules, reactions be-
tween molecules where electrons and/or atoms are exchanged, and
molecular pathways, which describe a chain of molecular reactions.
Cell-scale functions that we highlight include cell dynamics and
interactions, such as how the cell develops and communicates with
its environment. We include the dynamics of the cell’s organelles
at this scale, such as mitochondrial activity. Tissue-scale functions
consider the behavior of aggregates of cells of the same type and
include tissue dynamics, such as growth, and tissue interactions,
such as signal propagation in neural tissue. At the organ scale we
consider processes related to blood flow as well as the functioning
of the heart, brain, and lungs. The body of visualization literature
at this scale is large in correspondence to the maturity of data ac-
quisition techniques available and the ease at which these processes
may be captured or simulated.

Non-human studies present an issue in this measurement-based
classification system. For example, a visualization of the neural
pathways in a fruit fly brain concerns micrometers, while a hu-
man brain measures in centimeters. Although the focus of this sur-
vey is on human physiology, there is immense value in considering
model organism physiology. These experiments tend to be more in-
novative, with correspondingly greater likelihood of exciting visu-
alization opportunities. In cases where we include model organism
physiology visualizations, we map the organism’s scale to the hu-
man scale. Following this logic, we classify, e.g., a visualization of
fruit fly brain activity at the organ scale.

4.2. High-Level Visualization Task

A subsequent layer categorizes the literature according to three
high-level visual tasks: exploration, analysis, and communica-
tion, as illustrated in Fig. 6. These tasks are drawn from Brehmer
& Munzner’s typology of abstract visualization tasks [BM13]. We
chose high-level, rather than low-level, tasks to provide a clear pic-
ture of the broad needs and challenges users face in visualizing
physiology and how this compares across scales. We first consid-
ered categorizing works according to visualization technique, e.g.,
direct visualization. However, since task ultimately drives the cho-
sen visualization technique, we feel that this is a more meaning-
ful classification mechanism that furthermore has been the basis of
classification in other surveys.

Exploration tasks often arise when the user is unsure of what
the data contain. In the context of the data visualization pipeline,
the user typically wishes to minimally abstract the data and pro-
duce a visual mapping that is as close as possible to reality. They
do this to explore what the data actually contain. This is often a
preliminary step in a larger analytical process. Analysis tasks oc-
cur when the user may be more sure of the intrinsic characteris-
tics of the data, but now want to extract meaning from these data.
Analysis often relates closely with exploration, where a user may
begin with an exploratory approach to generate a hypothesis, then
perform low-level analytical tasks alongside statistical methods to
follow up on their hypothesis. In the visualization pipeline, analysis
involves production of new artefacts through data transformation,
derivation, and abstraction [AMM*07]. Although important for any
task, audience is a key part of a communication task, where a vi-
sualization is created to underline key concepts of the data for pre-
sentation, education, or enjoyment to a particular group, whether
to peers or to a broader audience. Visualizations developed for this
task are often further abstracted from the data than in analysis- or
exploration-oriented tasks, and can incorporate cinematic or story-
telling elements to convey the author’s interpretation of the data.
While nearly all publications include figures to communicate sci-
entific results, for this survey, we identify uses of visualization for
communication beyond what is achievable with standard, out-of-
the-box tools.

Many visualizations cannot be defined through strictly one of
these tasks and rather are often generated to meet a combination
of tasks. A work created to explore the data may also specify a
visual analysis task. For example, ZigCell3D [dHKMKI13] visu-
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ally explores simulations of cellular functions while also provid-
ing tools for the visual analysis of the underlying simulation. The
same data may be visualized for a communication task if the data
are more visually abstracted or if annotations or glyph overlays are
added to tell a story about the underlying information. This may
also summarize key findings from, e.g., a visual analysis session
for a broader audience. We apply weighted categorizations to each
work, excluding surveys that cover many works. This produces a
vector of three values between 0 and 1 for exploration, analysis,
and communication, respectively. We then use this vector to posi-
tion a work in a barycentric coordinate space, which allows us to
compare and contrast between similar works within and between
different spatio-temporal scales.

We arrange works graphically within a triangle where each of
the three points corresponds to a high-level task, as shown in the
left of Fig. 6. Exploration resides at the top of the triangle to re-
flect that, when exploring data, we are in a position of knowing the
least about what we are looking for and/or the data are in their least
abstracted form. Moving clockwise to the right corner is analysis,
where we usually know something about the data and what we are
looking for. Communication resides at the left corner, where data
are highly abstracted and summarized in order to present, com-
municate, or serve data for enjoyment. The set of four triangular
glyphs in Fig. 6 summarizes our visual taxonomy. Each triangle
represents a single scale space, where the three triangle points rep-
resent the three respective visualization tasks. Circles indicate the
position of each work as encoded by its balance of exploration,
analysis, and communication tasks. Circle darkness and size dually
encode the number of works with a given task categorization that
we collected in our survey.

Literature Overview. The scale and task categorizations for each
literature item collected for our survey can be browsed in the Ref-
erences section. Scale is labeled with a grayscale color tile, and
related surveys are labeled with a black tile. Individual categorized
works include a miniature bar graph that indicates the task(s) ad-
dressed, i.e., exploration (yellow), analysis (magenta), and commu-
nication (blue), from a range of 0 to 1. An interactive overview
of the complete literature collection is available at https://
lauragarrison87.github.io/star.web/vis_tool.

5. Molecular Function

All physiological processes depend on events that occur at the
molecular scale. Molecules are the smallest units of a chemical
compound and are themselves made up of atoms. Molecules in
living organisms are known as biomolecules. Large biomolecules,
known as macromolecules, include DNA, RNA, proteins, and
lipids, while small biomolecules include metabolites [KKF*17].
Molecules are dynamic, flexible structures that interact and react
with nearby molecules or ions. These individual reactions link into
pathways with cascading effects at larger spatio-temporal scales.

Data. A number of data types can be used to characterize molecular
function. Omics data, which is an umbrella term that includes ge-
nomics, proteomics, metabolomics, and transcriptomics data, are
used experimentally to characterize and quantify molecular pat-
terns and behaviors that scale up to the behaviors of cells, tis-
sues, and entire organisms [SS07; GOB*10; GVS*20]. Some of
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these data may be utilized as structural data sources. These include
nuclear magnetic resonance (NMR), x-ray crystallography, cryo-
electron microscopy [KKF*17], and mass spectroscopy [MB19].
High resolution microscopy techniques, such as fluorescence life-
time imaging microscopy (FLIM), may also be used to visualize
dynamic signaling events between proteins and their specific loca-
tions in living cells [SP15]. Molecular dynamics simulations com-
monly pair with these structural data to describe conformational
changes and reactions between molecules [SML*10].

Related Surveys. Various aspects of molecular function have re-
ceived considerable attention from the visualization community
with a strong focus on visual exploration and analysis tasks. The
main challenge with these large, multifaceted datasets is to bal-
ance insight with complexity. The BioVisExplorer tool by Kerren
et al. [KKLS17] is a useful starting point to explore the space of
methods for molecular data visualization according to data type,
data properties, and data tasks. Alharbi et al. [AAM*17] contribute
a brief survey of surveys of molecular visualization of computa-
tional biology data, where the main focus of many of the surveys in-
cluded is on either structural aspects of molecules, or on visualizing
molecular dynamics and interactions from simulations and struc-
tural data [OGF*10a; HGB14; KKF*17]. Visual analysis tasks for
molecular interactions related to molecular cavity structure and dy-
namics have received considerable attention [KKL*16; SLD*17].
More recent surveys that include discussions of methods to visual-
ize molecular dynamics and interactions of structural data include
those by Schatz et al. [SKPE19] and Martinez et al. [MKA*19].
Johnson & Hertig [JH14] provide a communication-oriented guide
for the visualization of molecular structural data with a short dis-
cussion on visualizing molecular dynamics.

Surveys centered around visualizing processes from omics data
from a systems biology and bioinformatics perspective similarly
emphasize the challenges of balancing insight with complexity for
visualizing these data. The primary focus is often on data analysis,
with exploration secondary [SSO07; SBH*08; GOB*10; PMP*15;
SSHU15]. These works provide an overview of data types, visual-
ization tools, and methods for large-scale omics data. Their focus is
on tools and methods for molecular interactions and pathways with
the goal of understanding and interpretation, generally by experts.
Approaches for using multilayer network graphs to visualize omics
data are explored in McGee et al. [MGM*19]. From the pharma-
cology domain, Csermely et al. provide a comprehensive review
of analytical tools for molecular interactions, pathways, and net-
works for the purpose of drug discovery [CKK*13]. Visualization
approaches highlighted are limited to node-link diagrams with ab-
stract glyph representations of molecular entities.

A number of works target the visualization of genomic data,
where understanding patterns of gene expression is an important
facet [NCD*10]. Nusrat et al. [NHG19] survey the tasks, tech-
niques, and challenges for visualizing genomics data, of which
gene expression and interactions are an aspect. They emphasize
the need for tools that allow for exploration for hypothesis gen-
eration and follow-up analysis. Works by Goodstadt & Marti-
Renom [GM17], Yardimici et al. [YN17], and Ing-Simmons & Va-
querizas [IV19] highlight several visualization methods that incor-
porate the 3D nature of gene organization in chromatin and chro-
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mosomes into the visual analysis of gene interactions and expres-
sion, which is of particular interest to experts in recent years.

In the following subsections, we review a selection of visualiza-
tions for three categories of processes that themselves increase in
temporal and spatial scale: molecular dynamics, molecular inter-
actions, and molecular pathways.

5.1. Molecular Dynamics

Molecules are flexible and dynamic structures that frequently tran-
sition between conformational states. These structural dynamics
are due to interactions between a molecule’s atoms, with nearby
atoms from their environment, and environmental conditions like
temperature and pressure [Rin18]. Molecular dynamics are charac-
terized by the time scale of their conformation fluctuations (kinet-
ics) and the amplitude and directionality of the fluctuations (struc-
ture). These fluctuations form a multidimensional energy land-
scape. Local fluctuations typically occur over nanoseconds, while
global fluctuations can span microseconds to seconds. These global
fluctuations are big conformational changes that signify protein-
protein interactions, or reactions that initiate a molecular pathway,
e.g., signal transduction [HK07]. Domain researchers are particu-
larly interested in this energy landscape as it applies to understand-
ing mechanisms of disease and for drug design.

Visualization approaches that target the flexibility of molec-
ular structures often use nonphotorealistic visualization tech-
niques that show molecular surfaces at atomic resolution. Ball-
and-stick and ribbon visualization representations are also com-
monly used [JH14; KKF*17]. Color is often assigned to highlight
differently-flexible regions. In addition, many visual analysis meth-
ods incorporate simple graphical elements, such as glyphs or path-
line visualization techniques.

Approaches that are mainly exploratory in nature are intended
to allow researchers to browse and familiarize themselves with the
results of a molecular dynamics simulation. These approaches tend
to use minimal abstraction and encodings that are familiar to the
domain [GBC*14; LBPHI10]. This also includes tools like VMD
[HDS96] or PyMol [Sch15], which are widely adopted in the ap-
plication domain. Visual elements may be used to draw out features
within the data for exploration, such as pathlines to indicate atomic
paths that drive changes in overall molecular shape [DRSR15].

As researchers become more familiar with the data, they may
switch from exploration in an overview to analysis of a partic-
ular region of a molecule or molecular complex. Visual abstrac-
tion methods that exploit the hierarchical structure of molecules are
useful to facilitate toggling between exploration and more focused
identification and comparison tasks [LVRHO7].

Analytical approaches tend to incorporate interactive techniques
and/or statistical methods. These allow researchers to identify and
compare specific information about how parts of the molecule are
moving in relation to one another. These approaches are of partic-
ular interest for researchers in drug development and protein engi-
neering. A structural visualization of the molecule is usually im-
portant alongside 2D plots showing, e.g., trajectories [GBB*19].
For example, Fioravante et al. [FSTR13] use principle component
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Figure 7: MoleCollar [BJG*15] enables the visual analysis of pro-
tein tunnel dynamics and biochemistry in large ensembles of molec-
ular dynamics simulations. Reproduced with permission.

analysis to cluster molecules that have correlated motions, while
Schmidt et al. [SBHO02] derive mean shape conformations from the
data to allow researchers to identify and compare metastable con-
formations. Other methods incorporate additional visualizations,
such as time curve plots and heatmaps, to help researchers iden-
tify particular shape changes or constraints of interest [DCS12;
TTL*15]. Interactive filtering techniques also help researchers
identify particular movements of interest [HVO0O].

Conformation changes of a molecule affect not only its outer
shape but also the shape of cavities or tunnels in the molecule. The
shape of these tunnels affects the ability of a ligand, i.e., a signal-
ing molecule, to travel to its binding site within a molecular cavity
or tunnel [HG11]. These approaches usually include a mix of di-
rect 3D visualization methods alongside heavily abstracted meth-
ods to accommodate a specific goal, e.g., to understand how the
shape of a tunnel changes over time. Visual analysis methods in-
clude aggregating a molecular dynamics time sequence to a sin-
gle contour plot [BLG*15]. Heatmaps to show variation in tunnel
properties, such as tunnel centerline length, amino acid composi-
tion, and bottleneck size, can also be paired with direct visualiza-
tion of a molecule [BJG*15; GHX*20], as shown in Fig. 7. More
extensive visual abstraction from the original molecule shape can
be used to understand dynamic structural changes and energy land-
scapes without occlusion [KBP*16; KFS*16; LAQS20].

Limited visualization research is dedicated to the communica-
tion of molecular dynamics, as much of this work comes from col-
laborations with domain experts with specific exploratory or analyt-
ical goals. Communication-oriented works use graphical elements,
such as arrow glyphs, to illustrate molecular flexibility [BJG12].
Tools geared towards medical illustrators, such as Molecular Maya
(mMaya) [Cla22], allow artists to animate molecular motions.

Summary. Most of the works visualizing molecular dynamics are
targeted at domain experts for a combination of exploratory and an-
alytical tasks. The time scale over which molecules change shape
ranges over at least nine orders of magnitude. This presents a yet—
unsolved visualization challenge to provide exploratory and analyt-
ical tools to experts to review and identify movements of interest in
a vast temporal space.

5.2. Molecular Interactions

Molecular interactions can lead to an (ir)reversible reaction be-
tween two molecules [Ede13]. This can change the properties of
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the input molecule(s), synthesize a new molecule, e.g., polymer-
ization, or destroy a molecule. Enzymes speed up the rate of a spe-
cific chemical reaction within a cell. Ligands form a complex with
another molecule, often a protein, at a binding site [HG11]. This
binding initiates a series of reactions. The time scale of molecular
interactions is large, ranging from nano- to seconds, which presents
a similar visualization challenge as we discussed in Sec. 5.1.

Similar to molecular dynamics, visual approaches to molecular
interactions are strongly spatial and tend to focus on exploratory
and analytical tasks for domain experts. Experts are often inter-
ested in exploring a simulation of interactions between molecules
and in analyzing those interactions, e.g., protein-ligand interac-
tions, that could lead to binding events that trigger a molecular re-
action. Multi-view visualization approaches are ubiquitous, where
at least one view typically uses surface models and nonphotoreal-
istic rendering techniques to visualize the molecule(s) of interest at
atomic resolution. Coloring of the molecule(s) is often according to
biochemical properties or measures of uncertainty. Standard infor-
mation visualization techniques, e.g., line, bar, and scatter plots ac-
company the spatial view to describe interaction energies and other
important simulation parameters.

Key research questions relate to positional relationships between
the protein and ligand, which influence the likelihood of binding. In
some instances, the researcher wishes to observe such interactions
in living cells, as Kerppola’s work demonstrates [Ker06]. Detailed
position and interaction information from structural and simulation
data can be shown on a per-atom basis through direct visualiza-
tion of structural and simulation data. Glyphs and color-coding on
molecular isosurfaces often enrich the visualization with additional
information [TWK*11; TMJ*15].

Works that target the identification of important interaction and
binding events incorporate multiple data sources, e.g., simulation
and mass spectrometry [MB19], often in interactive views with
some level of guidance. Aggregation of trajectory data to aid the
analysis process is common. In addition, navigational techniques
help experts locate features of interest in these often large and
highly complex datasets. Such techniques can allow users to re-
veal different levels of detail on-demand [AKCL19], incorporate
focus+context techniques, as in the CLISD view of protein-ligand
interactions by Schatz et al. [SFS*21], allow filtering of subsets of
trajectories [JEB*19], and allow users to jump to different parts of
the simulation timeline [DHR*18]. Visual abstraction of the hierar-
chical structure of molecules may also be exploited for the analysis
of different configurations of protein complexes [FJK*19]. Many
works visualize 3D molecular structures alongside interaction en-
ergies and other important molecular parameters. These parameters
may be represented by glyphs as by Hermosilla et al. [HEG*17], or
using scatter and box plots as by Furmanova et al. [FIB*16].

Works that emphasize the broad scale of space and time over
which such interaction events can occur use adjustable aggregation
measures to manage spatial and temporal complexity [BTM*19;
PBBHI19; VS21]. Other works eschew 3D structural information
entirely in favor of abstracted graphics to visualize pairwise inter-
actions of interest [VHG*18; ZLW*21; SC21].

Tools and techniques from medical illustration and animation

can be used to explore and share possible hypotheses in modeling
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Figure 8: The Compressed Ligand Interaction Sequence Diagram
(CLISD) [SFS*21] provides an overview of protein-ligand interac-
tions over the course of a simulation, with unimportant residues
visually de-emphasized and important residues and related param-
eter values given greater visual emphasis through size and color
cues. Reproduced under Creative Commons CC BY license.

environments, such as AutoDesk Maya [NLHI20], or to communi-
cate molecular interactions between experts or to other stakehold-
ers. Approaches that give users tools to create molecular interac-
tions through rule-based frameworks enable exploration and shar-
ing of the resulting simulation data [GCK*18; NSK*21]. Guided,
interactive exploration through a rule-based simulation to track in-
teractions in a molecular environment allows users to see the direct
output of the simulation results or understand the spatial context of
reaction events between molecular structures. Some of these meth-
ods employ illustrative techniques, such as focus+context, that are
approachable for education and outreach [MPSV14], and incor-
porate multiple temporal scales into the visualization [KPV*14].
Visual complexity of molecular interactions scenes is an ongoing
challenge, but research has shown that oversimplifying the crowded
environments in which such interactions take place can be counter-
productive to learning [JM12].

Summary. Exploring and analyzing molecular interactions is valu-
able for experts to understand and identify features and behaviors
that can be used for pharmacological research. The main challenge
to visualization is to continue researching effective methods that
allow experts to understand the massive simulation datasets that
are generated. This can be achieved via interactive tools to enable
the identification of reaction events that occur very briefly within a
temporal space that spans several orders of magnitude.

5.3. Molecular Pathways

Reactions between molecules create small changes in their immedi-
ate environment that trigger other reactions. This chain of reactions
describes a molecular pathway [HG11]. Metabolism, signal trans-
mission, and gene regulation and expression pathways are essential
to life. Metabolic pathways describe the sequence of chemical reac-
tions that occur in our bodies, such as the process for a cell to break
down food into energy, or a pathway that builds a new molecule.
Signal transduction pathways move a signal from the exterior to
the interior of a cell with the help of proteins embedded in the cell
surface known as receptors. Gene regulatory pathways turn genes
on or off. When a gene is turned on, this allows the process of gene
expression to occur, which transcribes and translates DNA instruc-
tions to create, e.g., a specific protein [Ins20]. Pathways do not exist
in isolation and interact together in larger networks.
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Figure 9: Selected visualization approches from Gosling, a
grammar-based toolkit for scalable and interactive genomics data
visualization [LWLG21]. Reproduced with author permission.

Understanding the participants, sequence, and timing of molec-
ular pathways is key to understanding physiology at larger scales.
Given the complexity of the input data, visual methods to address
these goals tend to target expert user exploration and analysis tasks.
These incorporate varying degrees of abstraction and interactivity.
2D information visualization techniques dominate, with networks
being the most common technique, to show a sequence of steps in a
pathway. Heatmaps, line plots, chord diagrams, and histograms are
common for the visualization of gene expression.

The most straightforward visual methods allow experts to ex-
plore and identify the sequence of actors that participate in a
given pathway(s) use node-link diagrams. Perhaps one of the most
well-known pathway exploration tools, Cytoscape [SMO*03], uses
node-link diagrams to visualize complex pathways and networks
for users to explore and query. Such diagrams show entities in
highly abstracted glyphs, often indicate reaction direction, and can
indicate the location where the pathway takes place [LHM*09;
KS20]. Brushing and linking [GVS*20], filtering [LPK*13], com-
parison [Sch03], and focus+context [JKL*10] techniques for de-
tailed analysis are often supported. Numerous works have ex-
plored different layout algorithms to reduce crossover and clut-
ter of these complex and often crowded visualizations [BALJ06].
Many implement graphical representations using, e.g., a subway
map metaphor [LYKBOS8], that are approachable to broader audi-
ences [CBF*15; KDE*15]. Visualizations of pathway simulations
can be abstracted in 2D as line charts or heatmaps [SMW*21]
to help experts to better understand the timing of pathways. An
entirely different pathway simulation approach by Le Muzic et
al. [MWPV15] employs an agent-based approach with 3D molec-
ular structures to tell a multi-temporal scale story that provides in-
sights to both experts and broader audiences alike.

Identifying and comparing levels of gene expression can pro-
vide valuable information to researchers on the activity of a given
pathway, while studying gene co-expression can provide under-
standing of patterns and similarity of certain expression pathways.
Gene expression and co-expression data are most commonly dis-
played in heatmaps, parallel coordinates, and chord diagrams, as
shown in Fig. 9 [LWLG21]. Tools like Caleydo [LSKS10] enable
the exploration and analysis of large-scale pathway data alongside
gene expression data, using node-link diagrams and heatmaps in
a 2.5D layout. OmicsTide [HFKN21] uses clustering with profile
plots in a Sankey diagram to compare trends from gene expression
and proteomic data. Some tools capture the multiscale nature of

gene expression in visualizations that span the scale of individual
nucelotides to entire chromosomes [MMPO09]. Gene expression is a
dynamic and fluctuating process. Other tools allow for exploration
and analysis of temporal patterns of these fluctuations [MWS*10],
and in some cases use clustering methods to facilitate pattern iden-
tification [CAM18].

Researchers are similarly interested in identifying and com-
paring concentrations of metabolites in specific locations of the
body. This information provides another perspective on the activ-
ity of certain pathways. Tools for visual exploration and analysis of
metabolite concentrations are useful to understand metabolic pro-
files of diseases at a molecular level [NLK*14]. Such approaches
can use basic statistical methods alongside heatmaps [GVC*20],
violin [JEG*19], or star charts [JML19].

Strong communication-oriented approaches to visualizing
molecular pathways often draw inspiration from medical illustra-
tion and use cinematic elements to convey pathway information,
such as Berry’s animations showing the process of DNA transcrip-
tion in real-time [Ber18]. In this way, the molecular dynamics and
reactions between molecules at key steps in the pathway can be
visualized in a larger context. Large charts showing pathway ele-
ments, when mainly used for communication, usually rely on ab-
straction of visual elements to create a scene that balances accuracy
with readability [BVR*17; GMF*21].

Summary. Similar to molecular dynamics and interactions, the ma-
jority of visualization research works focus on expert-centered ex-
ploration and analysis tasks. The extraordinary complexity and vol-
ume of these data often necessitate guidance in interactive methods,
and many approaches use statistical methods to reduce the analy-
sis space alongside minimalist graphical elements. Further research
into methods that facilitate a greater degree of exploration for hy-
pothesis generation of these data, while managing the volume of
information present, is an ongoing visualization challenge and op-
portunity for all molecular processes. Visual communication re-
search for pathways is also important to develop further. Giving
the public better tools to understand how diseases work, such as
in COVID-19, can improve adherence and trust in public health
protocols. Understanding physiology at this scale is essential, as
molecular dynamics, interactions, and pathways work in concert to
trigger behavioral and physical responses that form the foundation
of cell physiology.

6. Cellular Function

The cell is the structural and functional unit of life in humans
and many other organisms. Cells are self-contained, bounded by
an outer membrane holding several substructures (organelles) that
perform specific functions and facilitate molecular pathways that
keep the cell alive and within balance [TBS*15]. We acknowledge
that the distinction between cell-scale processes and molecular-
scale pathways can be blurry, particularly in the case of large-scale
molecular networks that themselves define cell physiology. We cat-
egorized each work according to the scale that is most relevant
to the user’s interest. In cases where interest is primarily in un-
derstanding whole-cell behaviors, we categorized the work in this
scale, while if user interest is primarily in the various molecules that
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form a pathway or network, we categorized corresponding works in
the molecular section.

Data. Input data to visualize cellular function can be acquired ex-
perimentally, often through different time-lapse optical microscopy
methods on living cells and most commonly through fluorescence
microscopy. This technique allows researchers to tag cells with spe-
cific proteins that fluoresce under the microscope, enabling visu-
alization of specific cellular structures and behaviors. For a com-
plete overview of live cell microscopy methods, we refer to Jensen
et al. [Jen13]. Electron microscopy, which kills the cell, is often
used to supplement live microscopy methods to visualize ultra-
structure details inside the cell [Gla20]. Biomechanical methods
to experimentally determine the effects of different forces on cells
and their organelles include atomic force microscopy and tweez-
ing [BGG*18; HFS21]. Omics data, e.g., single-cell RNA sequenc-
ing (scRNA-seq) data, which provides the molecular expression
profiles of live individual cells, can also supply detailed informa-
tion on cell function and behavior [NTM*21]. Because a cell is a
self-sufficient entity, it is often a natural starting point for physio-
logical models of cell behavior [SPW*08]. The CellML repository,
maintained by the Human Physiome Project, is a rich repository
for cell behavioral models [LLHNOS8]. Stochastic simulations are
also useful to simulate complex biological pathways and networks
within the crowded and dynamic environment of a cell and its sur-
roundings [VTGB16].

Related Surveys. Surveys covering the visualization of cell dy-
namics and interactions are sparse relative to the molecular scale.
Pretorius et al. [PKE17] identify six classes of visualization tech-
niques: spatial embedding, space-time cubes, temporal plots, ag-
gregate plots, dimension reduction, and lineage diagrams in their
survey of visualization for live cell imaging. These techniques re-
main common in our report at this scale. Goodsell et al. [GOF20]
provide a review of visualization methods that combine experimen-
tal data from microscopy, structural biology, and bioinformatics
to build structural models of entire cells, mainly through nonpho-
torealistic visualization techniques. These models include details
of molecular behaviors and interactions that contribute to cell dy-
namics. Feig & Sugita [FS13; FS19] review models for visualiz-
ing whole-cell dynamics at the resolution of the myriad molecular
interactions that occur within a cellular environment. Their work
highlights the use of surface, ribbon, and ball-and-stick molecular
models at atomic resolution.

In the following, we discuss visualization trends and challenges
for cellular dynamics, which essentially are processes that affect
the cell itself, and cellular interactions, which are processes that
involve a cell interacting with its neighbors.

6.1. Cellular Dynamics

The dynamics of a cell are dictated by molecular pathways and
by behaviors of its organelles, which are themselves modulated by
molecular pathways. These pathways drive the dynamics of a cell’s
organelles, the ability of a cell to move in its environment, the suite
of internal mechanisms that dictate a cell’s growth, and that lead to
cell division and death, to name a few processes. We also discuss
visualizations for whole cell models.
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Figure 10: Visualization of vesicle formation from molecular dy-
namic simulation data [PKWM20]. Reproduced under Creative
Commons CC BY license.

Organelles participate in and facilitate the network of pathways
that drive the overall behavior of a cell. Visualization tasks related
to organelles are often exploratory in nature, e.g., to observe the
effects of an experimental condition under microscopy. Visualiza-
tion methods from the domain often show time-lapse imaging data
unmodified or surface renderings. This can help users to under-
stand the shape changes a cell nucleus undergoes in response to
experimental conditions [SKZ*15], the movement of cellular vesi-
cles [RVT#*20], or the compaction of chromatin in the nucleus over
different phases of the cell cycle [OPD*17]. Analysis-oriented ap-
proaches often color-code regions of interest on volume-rendered
segmented data or raw data slices to identify and compare features
that indicate the functioning of underlying pathways [JLC*17;
Gla20]. Glyphs are used to annotate features of interest on imag-
ing data as a process occurs [WAM*20], and heatmaps can quan-
tify interactions between organelles over the course of an experi-
ment [VCL*17].

Simulations using 3D surface models can help answer questions
about how organelle structures move and behave. For example,
Waltemate et al. [WSB14] visualize membrane dynamics at molec-
ular resolution in small “patches” of the cell membrane. More re-
cent works visualize microtubule dynamics [KVGM19] or dynam-
ics of mitochondria and cell transport vesicles [PKWM20], the lat-
ter of which is shown in Fig. 10. Such visualizations are adaptable
for use in education environments, with systems like LifeBrush de-
signed to explore mesoscale environments, e.g., the mitochondrial
membrane, at molecular resolution in VR [DSJ19]. Even further
toward communication are hand-crafted animations, such as the
ground-breaking Inner Life of the Cell [Bol06], which shows the
interplay between various organelles and molecules within the cell
using cinematic techniques and visual abstraction to focus the nar-
rative.

The individual dynamics and interactions of organelles influ-
ence and facilitate the cell’s response to input from its environment
and internal mechanisms that push the cell through its life cycle



Garrison et al. / Trends & Opportunities in Visualization for Physiology:A Multiscale Overview

b Hi
. QOOQB.‘:

' | O o
i %:%000916
oo
: 9 1 .vaooo
: 8 2 }
3 e 00
® Qeee0—0=0

2057 al

RNA ©

Prot Cpx  Prot Mmr

Time (h)

e f
(T T T T T TT TR YTl T T T H I
sooor —{ I T MDY T 10— 10 L0 g0
sounor 4TI T DT M1 0T 10

ssooor = LI HOCO T S T T R
2oc00r {000 T+ TICTIC T 100
250001 ] HI (T T TR WD
soooor = JONOCO =TI I T T
ssooor =TT ICHICT _MOWC T 1T W W0
oot {_H_THICTTJCTITIC T 0T T
sooor T HIT XN NN T T WHTT I )
s00001 T I T THIHID
550001 WITHHIN H

Position

Time (h)

Figure 11: WholeCellViz [LKC13] modeling framework to explore
and analyze simulations of cellular dynamics, such as cell shape,
metabolic fluxes, and protein expression over the cell cycle. Repro-
duced under Creative Commons CC BY license.

of growth, division, and death. Visualization of cell movements in
2D or 3D to discover and understand behaviors under experimental
conditions is common in the domain, e.g., to understand cell cycle
progression [SKM*08; HRP*12].

Researchers may be interested in localizing subcellular struc-
tures and interactions through direct observation of imaging
data [ASTMO7] or may supplement imaging output with his-
tograms, time plots, and similar aggregate visualizations to quan-
tify features of interest [XMM®*20]. Approaches may also use
such aggregate visualizations to visualize results of classifications
based on live microscopy alongside gene and protein expression
data [BHK*21]. Dimensionality reduction methods, such as tSNE
and HSNE, are useful methods to characterize and compare differ-
ent cell behaviors and types from high-volume experimental data.
Visualizations can map the results of these methods to a scatter
plot, with color coding the cell type according to an expression
marker [HPvU*16], and include guidance methods to more easily
explore and analyze the data [HPvU*17]. Others deal with these
high-volume data by identifying exemplar cells, either automat-
ically or through user specification, to track specific derived at-
tributes, such as growth, in response to drug treatments for can-
cer research in a multi-view visualization [LPJ*22]. Simulations
allow researchers to manipulate cellular parameters for exploration
and analysis. Simulations of parts of the cell cycle can be queried
and explored for hypothesis generation in tools like CellCycle-
Browser [BYG*18], which uses an interactive multi-view visual-
ization containing heatmaps, line, and scatter plots to show the re-
sults of parameter changes to the system.

Whole-cell physiology is naturally multiscale, with limited
works addressing visualization and specific user tasks at both
molecular and cellular scales. These works enable experts to bet-
ter understand intracellular functional and structural relationships.
Highly abstracted approaches, similar to node-link network dia-
grams to represent molecular pathways, can visualize the multi-
scale interactions that occur within the cell [QHW*21] for querying
or exploration. Visualizations of whole-cell simulations in 3D are
useful to put molecular pathways into context, such as the effects
of signal transduction on the cell’s function [FKRE09; FKRE10] or
the conditions and events that lead to cell death [FDSEI11; FKE13;
SBD*14]. WholeCellViz [LKC13] and ZigCell3D [dHKMK13],
the former which is shown in Fig. 11, are whole-cell model-
ing frameworks. These frameworks allow researchers to explore
and analyze cellular simulations in a biological context, from the
molecular to the entire cell scale. They include pathway informa-
tion as maps, as well as animation. ZigCell3D also incorporates
imaging data and 3D models. A recent structural model of a whole
Mpycoplasma cell [MAK*22] provides an unprecedented means for
researchers and the general public to explore and understand the
structural and functional relationships of entities within the cell.

Summary. The visualization of cellular dynamics puts molecu-
lar pathway information into a cellular context and enables under-
standing of overall cell behavior. Experts are often interested in ex-
ploring and quantifying these data directly from imaging methods,
with analysis of key features in aggregated plots. Further research
into more interactive methods to facilitate analysis that allow ex-
perts to move away from simple rendering of microscopy data is a
possible direction to explore. Very few works, especially from the
visualization community, support expert study of organelle dynam-
ics and behavior. This is an open space for visualization research.
Multiscale visualization becomes truly meaningful at this scale to
connect molecules with cellular behaviors. While numerous meth-
ods allow for exploration of whole-cell physiology, analysis of
such models remains relatively limited, and this is another future
research opportunity. Finally, in some contexts, communication-
oriented approaches can serve both experts and a broader audi-
ence equally, as cells are less conceptually-abstract entities than
molecules. Research into such approaches, particularly with re-
gards to public health and in facilitating conversations on the mech-
anisms of disease, is an exciting challenge.

6.2. Cellular Interactions

In reality, cells do not exist in isolation. Their physiology is
strongly influenced by interactions with their environment and
neighboring cells. In this section, we discuss works that focus on
the behavior and fate of individual cells, where understanding the
environment and neighboring cell interactions are key to the user
task.

As in previous topics, many visualization works are born out of
collaborations with domain experts and mainly address exploratory
and analytical tasks. These methods allow researchers to browse
experimental, imaging, or simulation data to understand cell com-
munication, lineages, and migratory patterns.

Direct visualization of live cell imaging data provides an
overview of cell division, adhesion, signaling, and movement pat-
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Figure 12: sci-Space measures patterns of gene expression over
time to understand patterns of cell differentiation and migration in
neural tissue [SRB*21] Reproduced with permission.

terns within different environments, e.g., tumor microenviron-
ments [EEA*08]. Clustering methods can facilitate user explo-
ration of intercellular communication networks from single-cell
transcriptional data. COMUNET classifies and clusters cell types
according to ligand-receptor pairs and visualizes these communi-
cation patterns in node-link diagrams [SS20]. Migration patterns
of differentiating cells can be understood by visualizing, e.g., spa-
tial transcriptomics data, as in sci-Space [SRB*21] (Fig. 12), where
heatmaps of gene expression patterns are measured over pseudo-
time to capture cell differentiation and migration in a tissue context.
Clustering methods can classify cells according to their migratory
and other behaviors from microscopy data, which is valuable for
comparative analysis [FHWL12]. Simulations with simplified 3D
spherical models to represent individual cells provide information
and control on per-cell properties of division, adhesion, and other
environmental variables in vitro [Pal08; GHF*18].

Cell lineages contain valuable information on patterns of cell di-
vision, growth, differentiation, and death over generations of cells.
This is particularly important with stem cells, which have unique
regenerative abilities that have massive implications in cancer and
other areas of medical research. Statistical methods to make sense
of these patterns, in combination with the branching tree structures
of lineage diagrams, help researchers identify and compare factors
that influence cellular genealogies [GLHR09; PKE15]. These ap-
proaches can include visualization of cells within a spatial context,
with navigational tools to observe how cells divide and where they
migrate, e.g., to neighboring blood vessels [WWB*14; SGAT21].
Uncertainty due to segmentation of microscopy data when track-
ing cell aggregation is a challenge. Tools like Uncertainty Foot-
print [WH17] attempt to visualize and quantify these uncertainties
for domain experts.

A growing interest in public science education has led to the de-
velopment of tools like Bioty [WSGR17], a real-time programming
environment that visualizes cell interactions for non-experts. As for
other topics, hand-crafted medical illustrations are used to educate
audiences on cellular interaction processes, such as the communi-
cation between a neuron and muscle cell [Goo09].
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Summary. Visualizing cellular interactions adds a degree of com-
plexity to cellular function visualizations, as these leave the self-
contained environment of the cell to include external parameters
that increase the complexity of the system. Collaborations with
experts provide a means to explore and analyze data acquired ei-
ther experimentally or through simulation, where gaining an un-
derstanding of the data through exploration is equally important
to more targeted analysis tasks. Developing methods to facilitate
exploration and analysis of cellular microscopy and lineage infor-
mation through visual abstraction while retaining expert trust is
one research opportunity. We found few works visualizing cellular
migration and adhesion, particularly from within the visualization
community. Given the importance of these behaviors in normal de-
velopment and disease, this is yet another research opportunity.

7. Tissue Function

At the tissue scale, we see groups of cells of the same type that per-
form a specific function. These form tissue, which allows for coor-
dinated behaviors to accomplish tasks impossible for single cells
to perform. A tissue region also includes a container, known as
an extracellular matrix, that holds the cells together and provides
structural stability [SPW*08]. Each of the four main tissue types
in the human body serves a specific role: (1) epithelial: covers and
lines body surface and cavities; (2) connective: protects and sup-
ports body structures, i.e., organs; (3) muscle: coordinates move-
ment; and (4) nervous: facilitates communication of nerve cells
through electrical signaling. The visualization works we discuss
in this section aid user tasks where the goal is to understand the
overall behavior or dynamics of cells in aggregate, rather than indi-
vidual cells. One process that we highlight includes tissue growth,
also known as morphogenesis. This process drives the development
of, e.g., blood vessels or tumors. We also discuss methods for visu-
alizing perfusion, the delivery of nutrients to tissue via small blood
vessels called capillaries, and the propagation of electrical signals
through tissues.

Data. Spatially-resolved gene expression data can characterize
the overarching physiology and behavior of tissue [NTM*21].
These methods may pair with imaging methods, such as seq-
FISH+ [WNMR20]. For a comprehensive discussion of specific ex-
perimental methodologies, we refer to Waylen et al. [WNMR20].
Imaging methods for perfusion are well-established. These include
positron emission tomography (PET), single-photon emission com-
puted tomography (SPECT), computed tomography (CT), Doppler
ultrasound, dynamic contrast-enhanced magnetic resonance imag-
ing (DCE-MRI), dynamic susceptibility contrast MRI (DSC-MRI),
phase-contrast MRI (PC-MRI), ASL (arterial spin labeling), and
optical methods such as widefield or fluorescence microscopy.
Conventional widefield microscopy is common for visualizing tis-
sue histology, although this requires fixing cells to a slide that not
only kills the cells but can damage their spatial organization. Sim-
ulations and models often describe signal propagation within ner-
vous or cardiac muscle tissue. Imaging data at the resolution to
visualize individual neurons involved in signal propagation typi-
cally come from microscopy. State-of-the-art techniques for imag-
ing brain tissue include confocal laser point-scanning microscopy
(CLSM) and spectral precision distance microscopy (SPDM) for
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their high resolution, improved signal-to-noise ratio, and removal
of out-of-field fluorescence. For further reading on these tech-
niques, we refer to Troger et al. [THP*20].

Related Surveys. Visualization works that cover tissue-scale phys-
iology are limited and generally motivated by the needs of experts
in the medical domain. Preim et al. [POM*09] survey methods
for the visual exploration and analysis of perfusion data. The au-
thors highlight cine-movies, subtraction images, and color-coded
parameter maps on a single slice as basic visualization techniques.
Advanced visualization techniques covered include multiparame-
ter visualizations, e.g., colored height fields, combining structural
information with dynamic perfusion data, or extracted features,
e.g., temporal curves. Schlachter et al. [SRM*19] survey visual
computing methods for radiotherapy planning, which include a de-
tailed visual analysis of the metabolic profiles of tumors that can be
acquired through perfusion data. Volume visualization techniques
that fuse multiple data sources into a single image through overlays
and color-coding are common in this area, particularly within the
application domain. More advanced visualization techniques en-
able exploration and analysis of uncertainties in segmentation, or
analysis of perfusion parameters in parallel coordinates, scatter, and
star plots, among others. Qutub et al. [QMK*09] review modeling
efforts for angiogenesis from an application domain perspective,
some of which include molecular and cellular-level processes in
the resulting visualization that we discuss further in Sec. 9. Visu-
alization techniques used to illustrate these models include node-
link diagrams, line plots, and histograms to describe and analyze
model parameters. Spatial visualizations include algorithmically-
generated surface models and stacked image slices. Color maps to
model parameters, e.g., tissue oxygenation or upregulation of a par-
ticular pathway.

In the following, we provide an overview of visualization ap-
proaches and challenges for tissue dynamics, or the behavior of
aggregates of cells in a given tissue type. We then discuss tissue
interactions, including the delivery of nutrients and the passage of
electrical signals through specialized tissue.

7.1. Tissue Dynamics

Tissue dynamics refers to the behavior of aggregates of cells in a
given tissue type. Visualizing tissue dynamics simulations allows
researchers to explore the general mechanisms of tissue growth
and development under changing environmental conditions. Un-
derstanding spatial relationships at this scale is particularly impor-
tant, and many visualizations represent simulation data as 3D sur-
face models to capture the development of blood vessels (angio-
genesis) [QMK*09], liver tissue regeneration [HBB*10], embry-
onic limb [CHC*05] and organ development [DKY98; CGN*10],
and in a non-human case, wing development [BWB*12]. Explor-
ing changes in skin tissue as a response to aging in 3D is also of
interest [[AJG15], with the ability to change parameters to simu-
late the impact of disease or dehydration. In addition to visualiz-
ing normal processes, simulations are valuable sources to visualize
pathologies related to tumor growth under changing environmental
influences [TMS*11; TRM*12].

Although we have discussed gene expression data previously for
the analysis of cellular interactions, this family of methods is use-
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Figure 13: Compartment diagram and parameters for tumor
growth [MMF20]. Reproduced under Creative Commons CC BY
license.

ful for tissue-level visual exploration and to identify biomarkers in
cell aggregates when performed in situ and paired with imaging
data. These cell aggregates are often identified through clustering
methods [SIL*20], and can then provide molecular and cellular res-
olution maps of the body, e.g., of embryonic tissue development in
the first trimester [BGC*17]. Subsequent exploration of such tis-
sue maps provides an opportunity to discover emergent properties
at this scale. Multeesum [MMDP10] exemplifies this interplay be-
tween exploration and analysis, where comparing similar expres-
sion profiles of aggregates of cells allows researchers to form hy-
potheses about gene relationships and location. Numerous domain
approaches also use visualization mainly to confirm hypotheses,
e.g., the direct visualization of digital histology slide data to quan-
tify the progression of liver tissue damage in fibrosis [LLJ*21].

Communication-oriented visualizations of tissue dynamics may
take the form of adjustable simulations with easy-to-use interfaces
and simple graphics that appeal to both researchers and a broader
audience [WT21]. Animation of 3D models is also useful as an
educational tool for showing the process of organ development,
e.g., of the developing heart [SADCO02]. Lastly, hand-crafted il-
lustrations that describe models of tissue growth, as shown in
Fig. 13, are invaluable to clearly and succinctly share models with
peers [MMF20].

Summary. Visualization of tissue dynamics is often geared first to-
wards exploration to familiarize oneself with the data, as data at
this scale are typically complex and high-dimensional. Compari-
son tasks between groups are then common, where experts wish
to identify parameters or biomarkers that define certain tissue be-
haviors or functions. Tissue dynamics are challenging to visualize
in vivo, with approaches often using underlying processes such as
gene expression or the presence of other biomarkers to character-
ize tissue functional properties. Simulations provide the means for
visualizing truly dynamic growth processes in healthy and disease
conditions. However, they often are abstracted from reality, with vi-
sualizations that expose only the final part of a multiscale story that
is rooted in the molecular scale and with limited interactivity. De-
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Figure 14: Paraglyder is a tool for the visual analysis of tumor
metabolic profiles [MHBS20]. Image provided by the authors and
reproduced with permission.

vising methods to enable fully interactive exploration and analysis
of tissue dynamics, whether purely at the tissue scale or extending
across scales, is a grand challenge and opportunity in visualization
research.

7.2. Tissue Interactions

In this section, we focus on the interactions between different tissue
types that allow for the passage and exchange of nutrients, as in
tissue perfusion, or for the passage of electrical signals, as in signal
propagation.

The function of blood flow on the microscopic scale is to sup-
ply, or perfuse, tissues in the body with oxygen, nutrients, and hor-
mones and to transport waste products away into the appropriate
"recycling" centers such as the lungs, kidneys, and liver. Differ-
ent tissues have different perfusion rates, and visualization can be
a powerful tool in profiling tissues based on these data. Perfusion
data are particularly useful in identifying the extent, composition,
and metabolic profiles of tumors.

Most use cases to visualize tissue perfusion are highly
clinically-motivated with a particular set of analysis questions al-

Figure 15: Agent-based simulation of large-scale pyramidal neu-
ron cell growth with the BioDynaMo platform [BHAM*21]. Repro-
duced with author permission and under Creative Commons CC
BY license.
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ready in mind, although many methods incorporate a degree of
exploration. These approaches incorporate structural visualizations
of tumors and the surrounding tissue to provide context, and use
derived multi-parametric imaging data to classify and visualize
key physiological parameters. Approaches can use simple color
overlays with parameters mapped to color channels [ABBMO5] to
quickly quantify values. Advanced visualization approaches allow
for user interaction and exploration that incorporate time intensity
curves [OPH*09; GPTP10; MNM*16], radar plots [MHBS20] as
shown in Fig. 14, and scatter plots with glyphs encoding further in-
formation [MWH*20]. These representations allow experts to iden-
tify and compare features of tumor physiology.

In the human central nervous system, information is processed
by signal transmission and propagation between neurons, where the
extracellular space plays an important role in transmission and sig-
nal propagation.

In visualizing signal propagation, particularly in simulations,
experts wish to understand the mechanism, path, and timing of
these propagation events. Straightforward visualizations that plot
spikes in signal propagation are relatively common in the domain
literature, such as in Rhodes et al. [RPR*20]. Microscopy data
often provide a structural foundation for visualizing simulations
of signal propagation between neurons or in a multi-neuron net-
work [LHH*12; BHIM*21]. We show an example of a multineu-
ron simulation network from BioDynaMo in Fig. 15 that is realized
through procedurally-generated surface models. Dimensionality re-
duction methods can facilitate exploratory visual analysis of sig-
nal data, and allow users to identify patterns that signify, e.g., key
points of a behavioral task [BKSP11]. Abstracted 2D plots, such
as L-plots proposed by Dunin-Barkowski et al. [DLO*10], allow
experts to observe and compare neural signaling patterns. Signal
propagation is influenced by several factors, e.g., the distribution
and density of glycogen around a synapse, which is the space where
two neurons meet. Abstractocyte [MAB*17] is mainly designed for
the visual analysis of astrocyte structure and distribution around
neurons, but its pipeline includes glycogen distribution analysis.

Simulations of signal propagation are not limited to neural tis-
sue. Visualizing simulations of the electrical conduction system in
cardiac muscle tissue is of interest for experts to understand the tim-
ing and rate of signal propagation in different phases of the cardiac
cycle [HBCO6; BCG*11].

Summary. Unlike perfusion of tissue, the majority of work we
found for spatially visualizing signal propagation comes from sim-
ulation data. As hardware and software continue to advance and
support more complex simulations, there will be a corresponding
increasing need to provide visual methods to explore, analyze, and
communicate these data to various stakeholders. In tissue perfu-
sion, visualization research that further supports exploratory anal-
ysis to identify complex biomarkers is an ongoing challenge. Vi-
sualization approaches for both tissue perfusion and signal trans-
duction tend to have strong analytical components, especially in
the case of perfusion, where clinical diagnostic improvements are
the driving need for these applications. Communication-oriented
research works are limited at this scale. The clinical motivation for
understanding physiology becomes even more apparent at the or-
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gan scale, which deals with the interplay between different tissue
types on a larger scale.

8. Organ Function

The last scale that we review is that of visualization for organ-scale
processes. Organs are discrete units in the body that perform a func-
tion or a group of functions [SPW*08]. In the following, we cover
visualization for four areas that are well-known in medical visual-
ization: the dynamic properties of blood flow (hemodynamics), and
the functioning of the heart, lungs, and brain. We also include a
brief discussion of other visualized organ functions to give a sense
of further opportunities at this scale, e.g., skeletal muscle function.

Data. Typical data inputs for visualization of physiological data
at this resolution include a host of imaging modalities that can be
time-resolved alongside, or separate to, simulation data. In many
instances, structural data provide context to the visualized dynamic
process. Information about anatomical structures can also be based
on measures of physiology. For example, while diffusion-weighted
and diffusion tensor imaging (DWI/DTI) methods use the diffu-
sion of water molecules to capture the fiber architecture of the
brain, these data are primarily used to probe white matter mi-
crostructure [PKB*14]. As such, the visualization of DWI/DTI data
alone is out of the main scope of this work. The same is true for
other such structurally-focused modalities. 4D computed tomogra-
phy (CT) and a range of MRI sequences, e.g., dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) and phase-
contrast MRI (PC-MRI) [KBvP*17], are frequently used to assess
various organ functions. Specialized ultrasound (US) methods are
adapted to capture particular processes, e.g., Doppler ultrasound
for hemodynamics, or electrocardiography [XT10] and echocar-
diography [MVM#*11] for heart function. Computed tomography
angiography is useful in assessing hemodynamics and heart func-
tion [MBK*10]. For a discussion of the strengths and weaknesses
of these modalities in hemodynamics imaging, a hot topic in vi-
sualization research, we refer to Jennings et al. [JRGO8], Markl
et al. [MFK*12], and Sengupta et al. [SPK*12]. Typical imaging
modalities measuring brain function include electroencephalogra-
phy (EEG), functional magnetic resonance imaging (fMRI), and
PET. We refer to Pfister et al. [PKB*14] for a detailed discussion
of each of these modalities. Electromyography (EMG) [BHGG12]
and motion capture data are common sources for assessing muscle
function.

A number of these modalities alone have insufficient spatial
and/or temporal resolution to capture an organ process of inter-
est. These are often augmented with simulations, or simulations
are developed from these imaging data. The purpose of simulation
can also be to correct issues with the acquisition, such as motion-
related artifacts. Approaches include computational fluid dynamics
(CFD) for blood flow [RNNC15], statistical heart and lung motion
models, and large-scale simulations of signal propagation for brain
function.

Related Surveys. Surveys that discuss aspects of organ physiol-
ogy on a broad level are typically motivated by the medical domain.
Preim et al. [PM20] survey the use of medical animations for organ-
level processes that tend to focus on communication-oriented tasks.

Birkeland et al. [BSH*14] survey works that fit in the ultrasound
visualization pipeline, where the end-user task often is to explore
the data and to identify specific features within the data related to,
e.g., blood flow and heart function. Many visualization approaches
at this scale combine modalities to overcome individual modality
limitations. Lawonn et al. [LSBP18] provide an extensive discus-
sion on multimodal visualization. Tory et al. [TRM*01] provide a
brief overview of methods for MRI in combination with dynamic
SPECT data. In general, visualization tasks at this scale focus on
giving experts, whether in medical research or more directly in the
clinic, tools to explore and analyze physiological features for im-
proved diagnosis and treatment.

8.1. Blood Flow

While we previously looked at blood flow from the lens of how it
supplies nutrients to tissues (Sec. 7.2), researchers often are inter-
ested in the dynamics of blood itself as it travels through the heart
and vessels of the body. Understanding patterns of blood flow can
help researchers and clinicians make better decisions about patient
health, such as when to operate on an aneurysm.

Related Surveys. This is a mature area with several surveys
and state-of-the-art reports available. For further details on visu-
alization techniques and challenges on this topic, we refer to re-
ports by Markl et al. [MKE11], van Pelt et al. [vPV13], Vilanova et
al. [VPP*14], and Stankovic et al. [SAG*14]. For further reading
on visualization methods specific to PC-MRI blood flow, see K&h-
ler et al. [KBVP*17]. Most recently, Oeltze-Jafra et al. [OMN*19]
survey trends and challenges in visualizing medical flow data,
where the primary focus is on blood flow data. These surveys high-
light a mix of exploratory and analytical visualization tasks, where
tasks are highly motivated by domain experts’ needs to locate and
identify flow features that impact patient health. General flow vi-
sualization techniques are commonly used, e.g., glyphs, textures,
integral curves, line integral convolution (LIC), colored cut planes,
extraction to surface models, e.g., streamlines. Contextualization of
blood flow dynamics using image slice or volume rendering of the
surrounding anatomy is key in nearly all blood flow visualization
scenarios [OMN*19]. Advanced visualization techniques often in-
corporate multiple interactive views with facilities for validation,
filtering of key parameters, and uncertainty analysis.

Exploratory tasks generally aim at obtaining an overview of flow
patterns and often precede a quantitative workflow. These may vi-
sualize simulation data [RNNC15; NCWO09], use techniques that
combine different modalities to create the visualization [PHO7;
BFS*09; FFI*12], or use single imaging methods [BdHdK*16].
The containing structure of interest, e.g., a vessel or the heart, is
useful to preserve for context. The paths and direction of flow data
can be presented as pathlines [dHJEV16], streamlines [BFW*11],
arrows [HPT*08], and pathlets [ASN*14], which can also be used
for analysis. Newer approaches have experimented with effects like
smoke or dye to better visualize time-varying flow patterns with in-
dications of uncertainty [dHLJ*19]. Interactive elements, such as
virtual probes [VPBB*11], aid in expert exploration of flow pat-
terns prior to quantitative analysis.

Although illustrative techniques are often associated with
communication-oriented tasks, most illustrative techniques em-
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Figure 16: Method of aorta straightening for occlusion-free com-
parison of flow over time [AH11]. Reproduced with author permis-
sion.

ployed for this topic are aimed at experts to facilitate exploration of
flow data. These approaches can, e.g., reduce occlusion from vessel
walls through adaptive surface visualizations [GNKP10; LGP14]
or focus+context flow lens treatment [GNBP11]. Other illustrative
approaches facilitate exploration of wall thickness relative to flow
properties [LGV*16].

Many analytical approaches from the domain are limited in in-
teractivity. These approaches again include a structural context,
with similar visual representations for flow data as for general
exploration. Visual representations also often use heatmap over-
lays and/or glyphs of the same styles mentioned for exploration,
e.g., streamlines or arrows, to indicate flow velocities at particular
points. This allows for feature quantification directly from imaging
data [TSS*08; HPT*08]. Experts also often wish to quantify and
compare flow rates in simulations relative to time-resolved imag-
ing data [LGH*19].

Analytically-focused tools and methods developed from collab-
orations between domain experts and the visualization community
often take more experimental or abstracted approaches to aid anal-
ysis tasks. For example, Angelelli et al. [AH11] flatten 3D tubu-
lar flow to 2D to compare flow patterns over time, as shown in
Fig. 16. Semi-automatic classification and clustering methods are
also common to aid expert identification and comparison of vor-
tices and shapes in the data [OLK*14; ERH16; MBP*16; OCJP16].
Interactive linked views, particularly when including simulated and
acquired data, can help experts to better evaluate hemodynamic
patterns and model accuracy [LNHL20]. Multi-view visual anal-
ysis tools often rely on an interplay between exploration and anal-
ysis for users to get a sense of the data and browse interesting re-
gions before identifying and comparing features to understand, e.g.,
aneurysm rupture risk [MWPL20; MVG*21].

Approaches from the research community to present blood flow
in education for a more general audience are limited. These meth-
ods may hint at the original flow data through animation but instan-
tiate red blood cells to indicate to a broader audience what the flow
represents [GMF*21], or employ more fanciful metaphors to show
the passage of blood in a cardiac cycle [CHV*14].

Summary. Despite the extensive work on hemodynamics, further
challenges and opportunities remain. The ultimate aim of many of
these works is to make visualization of hemodynamics available in
a clinical setting to aid in rapid and accurate identification of life-
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threatening flow behaviors. Studies that assess the possibility of
real adoption of these techniques in clinical routine are an interest-
ing avenue to explore. Communicating these data then to patients,
in a way that is both understandable and minimally-alarming, is
essential and remains an open challenge in visualization.

8.2. Heart Function

Heart function is well-characterized in physiology and visualiza-
tion research. In this section, we focus on visualization related to
(1) the mechanics of the heart as a pump and (2) the cardiac conduc-
tion system of the heart, which is an electrical network that controls
heart rate and rhythm [HG11]. Diseases related to these aspects of
heart function include (1) myocardial ischemia, where the heart tis-
sue does not receive enough blood from its supplying arteries, (2)
heart failure, where the heart is unable to pump blood effectively,
and (3) atrial fibrillation, a dysfunction of the cardiac conduction
system that leads to irregular heart rate and rhythm. These diseases
provide strong clinical motivation and drive many of the visualiza-
tion use cases in this topic.

Related Surveys. Nazir et al. [NKA*19] survey the visual-
ization of various aspects of heart function from the medical do-
main, focusing mainly on analysis for use clinical routine. Walton
etal. [WBT*14] provide a broad overview of the methods and chal-
lenges in visualizing cardiovascular magnetic resonance imagery
for clinical research before presenting a prototype approach for vi-
sualizing this type of data. Generation of surface models and vol-
ume renderings of the heart, paired with time-lapse video to de-
scribe deformation, are key visualization techniques for this topic.
Heatmap visualizations commonly indicate parameters of interest,
and the bull’s eye plot is ubiquitous for the visual analysis of per-
fusion data to understand heart function.

Exploration-centered visualizations provide an overview to ex-
perts of general features and parameters related to shape changes,
e.g., for specific chambers, valves, or the entire heart, in a cardiac
cycle. These works visualize phases of the cardiac cycle from sim-
ulations on surface models (which typically are abstracted from
acquired data), such as the LFX Virtual Cardiac Model [JJDS04]
or the constrained Multi-linear Shape Model [IGV*10]. Patient-
specific approaches visualize models in combination with acquired
data [WWZS10; ANL*16], or only acquired data. Some works
build predictive models, and preserve links between the simu-
lation and the original data to understand the mapping proce-
dure [SLS09]. Although we discuss blood flow extensively in
Sec. 8.1, for completeness, we note that several approaches visu-
alize patterns of blood flow to explore questions related to heart
function, e.g., Kulp et al. [KMQ*11].

Approaches geared towards a combination of exploration and
analysis, or focused more purely on analysis, often favor colormaps
applied to mesh or imaging data to quantify parameters of interest.
Rainbow colormaps are common, especially in the medical domain.
These works often use multiple interactive views to link simulation,
imaging, and derived statistical information. The main purpose of
the visualization is to evaluate particular parameters, e.g., strain
rate [HSTS98; PPO0]. Evaluating the movement of particular land-
marks can be aided by additional plots, such as parallel coordinates
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Figure 17: Visual analysis for the quantification of septum motion
from real-time cardiac MRI [THS*17]. Reproduced with permis-
sion. © 2017 The Author(s). Eurographics Proceedings © 2017 The
Eurographics Association.

and heatmaps, to compare different motion parameters [THS*17],
as shown in Fig. 17.

Perfusion data, which we visited previously in Sec. 7.2, are of-
ten used as a basis to determine heart functionality. Most use cases
are tied to experts with a need to identify and quantify particular
tissue properties in the context of a pathology, and while explo-
ration is a component, it is usually not the main task. Many ap-
proaches incorporate a bull’s eye plot in cases related to myocardial
ischemia, where heart tissue does not receive the blood and nutri-
ents it needs to function. This visualization is familiar to clinicians
to quantify the extent of the damage to the heart tissue, often along-
side structural representations of the coronary arteries [OGHPO06;
TBB*07; TBB*08; RBPJ16]. The bull’s eye plot can be further
adapted for targeted visual analysis of the motion of the left ven-
tricle of the heart over time [SCK*16]. Approaches are often inter-
active to provide an exploratory element for the user. Glyphs can
be incorporated, as by Meyer-Spradow et al. [MSD*08], to quan-
tify local tissue perfusion across the whole heart. Statistical, e.g.,
PCA, and aggregate measures may be used to reduce the com-
plexity of the data [ODH*07] and include representations of un-
certainty [RBPJ16].

Visualization is also used to evaluate the accuracy of simula-
tions against acquired data, where heatmaps [MBK*10] or jux-
taposed line plots [HORO7] indicate shape prediction accuracy.
Other methods focus heavily on patient-centered care and out-
comes [XSZ*16], such as simulations of surgical procedures,
e.g., mitral valve clipping, with quantitative evaluation through
heatmaps to help predict patient outcomes [MVM*11].

Some heart simulations have been developed, not only for expert
exploration, but for use in education and surgical training. These
include Dayan et al.’s [DOS*04] 3D animation of the dynamics of
a simulated mitral valve and the virtual reality (VR) simulation of
radio frequency ablation by Pernod et al. [PSRD10]. Pernod et al.’s
approach uses a heatmap to show membrane propagation potential,
a tissue-scale process, on the heart surface. VR has also been used
for patients in a biofeedback scenario to manage stress [GWZE18].

Summary. While full cardiac models of heart function for detailed
exploration and analysis are of high interest to the medical commu-

nity, visualization research efforts to aid these tasks are relatively
limited in comparison to the efforts dedicated to blood flow. In the
analysis of perfusion data for whole-heart pathologies, a higher vol-
ume of works focus on solving tasks for clinicians. However, stud-
ies on their actual adoption and utility in a clinical setting are lim-
ited. Communication-focused works that visualize heart function,
while numerous in the field of medical illustration, remain a com-
paratively limited topic in visualization. A number of recent works
to visualize heart function rely on multiscale models. We discuss
these works in Sec. 9.

8.3. Lung Function

The main function of breathing, i.e., respiration, is to provide oxy-
gen to the tissues in the body and to remove carbon dioxide [HG11].
We focus here on the in- and outflow of air from the lungs and on
limited cases where research includes other organs affected by lung
movements.

Experts interested in learning about the features of lung de-
formation during breathing often rely on simulations, commonly
from statistical modeling, to visualize this process [SG05; SID*08;
KLO10; EWSH11; WWLS13]. These generally integrate with
imaging data to provide spatial context, often via surface model-
ing or volume rendering techniques. More recent approaches have
used neural networks to reconstruct lung deformations as surface
meshes from 4D CT data [WZH19].

Experts are also interested in understanding patterns and features
of dynamic airflow. This interest may be in visualizing airflow pat-
terns within bronchial tubes [STMO8] or on a larger scale. Kim et
al. [KBV*15] present a coupled model of tissue deformation on
the level of the whole lungs alongside network airflow, enabling
predictions of various dynamic flow properties. The model is mul-
tiscale, but, as shown in Fig. 18, does not necessarily provide spatial
visualization of cell-level air exchange and lacks visual interactiv-
ity. Wiechert et al. [WCRW11] couple tissue- and organ-scale pro-
cesses to allow visual exploration of tissue regions locally and the
whole lung and airway system globally.

In more analytically-focused cases, visualization enables the
comparison of movements of an object of interest against an ac-
quired signal [LCPS10]. Similar to heart function, visualization is
also used to evaluate model accuracy against acquired data and
to assess and compare the magnitude of lung deformation using
heatmaps [NTC*19].
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Figure 18: A coupled model of tissue deformation and network air-
flow that enables predictions of dynamic flow properties [KBV*15].
Reproduced with permission.
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Respiratory visualization models, in addition to parameter ex-
ploration, may also be used to compare characteristics of air flow
in healthy versus diseased patients [KBV*15]. In other instances,
experts use lung function to indirectly provide information in the
analysis of other organs. For example, breathing exerts force on
the kidneys. The degree that the kidneys are compressed during the
breath cycle can be used to evaluate kidney fibrosis [SHHB16].

Summary. The bulk of literature we found from visualization and
domain research focuses heavily on expert exploration of airflow
and lung deformation over breath cycles, with limited tools for
analysis and even more limited work in visualizing lung function
for communication. These works primarily come from outside the
visualization community and represent an open opportunity to de-
velop visual methods to support experts in better understanding and
analyzing lung function. These tasks are particularly important with
the advent of COVID-19, as experts work to understand the long-
term effects of this disease on lung function.

8.4. Brain Function

The brain is part of the central nervous system that contains more
than 100 billion neurons. It is the primary seat of control for any
process occurring within our bodies. Understanding brain function
provides a key to understanding human behavior as well as neuro-
logical diseases and disorders. While our discussion of signal prop-
agation in Sec. 7 focused on the propagation of action potentials be-
tween cells, we now discuss signal propagation and functional neu-
ral connections over the entire brain. This is known as functional
connectomics, where the brain is modeled as a network [STKOS].

Related Surveys. Margulies et al. [MBWGI13] and Pfister et
al. [PKB*14] provide an overview of ways that the human connec-
tome, both structural and functional, can be visualized for different
exploratory, analytical, and communication tasks. Node-link dia-
grams, scatter plots, dendrograms, and heatmaps are common tech-
niques in the application domain to visualize synchronous activ-
ity between brain regions. Structural models often provide spatial
context for functional connectivity and can be depicted as image
slices, surface models, volume renderings, or, in the case of DTI
data, through advanced techniques that include ellipsoid or brush-
stroke glyphs [LAK*98] and superquadric glyphs [Kin04].

Experts are interested in learning how different regions of the
brain functionally connect and in exploring patterns of brain acti-
vation in response to the presence, or absence, of certain stimuli.
This represents a broader-scope view of the questions experts have
when studying signal propagation. Heatmaps superimposed onto
imaging data or derived surface models to show activation regions
is a common approach that allows experts to explore and evalu-
ate functional imaging data [FC00; WVE*03; RTF*06]. Interac-
tive exploratory methods include dynamic querying for structural
and functional connectivity using DTI and fMRI data [SAM*05].

Visual analysis methods help experts identify functional parame-
ters and connections of interest. Standard methods often use a cor-
relation matrix to identify functional connectivity [PKB*14]. In-
teractive analysis approaches often incorporate linked views that
incorporate structural data alongside plots containing additional
functional information, e.g., time plots [JNM*09; Lun10] or radar
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Figure 19: Approach for classifying brain networks based on ex-
tracting contrast subgraphs, i.e., a set of vertices whose induced
subgraphs are dense in one class of graphs and sparse in the
other [LBG20]. Reproduced with author permission.

plots [MMH?*13]. Color-coded isosurfaces from structural imag-
ing, with network and scatter plots to show functional connec-
tivity and correlations [DVF*10], are another example of inter-
active visual analysis interfaces. These interactive, multi-view ap-
proaches may facilitate hypothesis generation in addition to confir-
mative analysis and integrate several data types and plots [JBF*19].
Clustering methods can group structural fibers from DTI data into
functionally-meaningful bundles. These can then be color-coded to
aid identification and comparison of functional groups [GGZ*13],
or to identify and compare resting state networks that are again
color-coded [VMHO8]. Other classification approaches to aid anal-
ysis use contrast subgraphs, shown in Fig. 19, as a primary means
to compare between groups [LBG20].

While the bulk of visualization research for brain function is tar-
geted at experts, some works that use illustrative techniques can be
used for communication to a broader audience. The work by Jainek
et al. [JBB*08] exemplifies such an instance for their use of glows
and a soft, harmonious color palette to show brain activity.

Summary. Visualizing brain function is challenging. This is owed
to the high computational power needed to simulate activity over
an entire brain, and the fact that many visualizations of brain activ-
ity are driven by imaging data that only indirectly indicate brain
activity and function. An additional challenge is that functional
networks and structural connections do not always overlap. Vi-
sualization research to depict these uncertainties can aid neuro-
science researchers. Furthermore, tools tend to focus on tasks re-
lated to exploration and analysis for domain experts. The develop-
ment of visual methods targeted toward clinical rather than research
use to identify aberrant patterns of brain function is an ongoing
challenge. Finally, as previously discussed, further research into
communication-oriented approaches that facilitate doctor-patient
communication and patient understanding are essential for rais-
ing the bar of health literacy and public health. For example, data-
driven approaches can communicate public safety stories, such as
the impact of alcohol on brain function when driving a vehicle.
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8.5. Other Organ Function

Although we focus our survey mainly on blood flow and functions
related to the heart, lungs, and brain, we briefly highlight other or-
gan functions that are representative of further opportunities in vi-
sualization research for physiology.

Skeletal muscle plays a crucial role in body movement and
defining anatomical shape. Lee et al. [LGK*12] review visual ap-
proaches, which often use 3D surface models, for modeling mus-
cle deformation and simulation of skeletal muscle functions at this
scale. Experts are chiefly interested in understanding the shape de-
formation that skeletal muscle undergoes during contraction and
relaxation [BHGG12]. Visualizations represent muscles at different
degrees of abstraction to serve different objectives in a simulation,
e.g., a single action line to show the axis of movement [NT98] or
reconstructing and simulating a subset of muscle fibers that cap-
ture the overall shape of the muscle as it deforms [KK14; KC20;
RMS20]. Visual analysis approaches are often interested in quan-
tifying muscle properties during contraction, such as muscle stift-
ness [SSG*10] or muscle speed in contraction [ANB*03]. These
data can be captured in multi-view visualizations that combine
structural models with line plots that describe displacement, veloc-
ity, and acceleration over the course of the simulation [YGV*13].

The stomach and liver are part of the gastrointestinal system
whose main functions are (1) to take in food and liquids and break
them down into a usable form and (2) to remove waste from the
body. The stomach is a highly elastic organ that serves as a tempo-
rary holding place for food and is responsible for its initial break-
down. To understand the stomach’s changing dimensions over time,
Gilja et al. [GH@B96] present a multi-view system that includes
a planar map of a region of the stomach for experts to better un-
derstand these temporal changes. The liver is the centerpiece for
many essential bodily functions, including blood and nutrient stor-
age, with a complex physiology that could greatly benefit from vi-
sualization. Lin et al. [LJHO04] visualize fluid transport through the
liver and its vasculature at the organ and tissue scales, using sim-
ulations in combination with imaging and animation techniques.
Their aim is to understand how the liver absorbs and metabolizes
substances.

Metabolic activity, as discussed in the context of molecular path-
ways in Sec. 5.3, can be visualized on the organ level to assess for
normal organ function. Approaches can be analytically-focused, as
in Nguyen et al.’s [NEO*10] method to visualize uncertainty from
PET kinetic modeling. Ropinski et al. [RVB*09] exemplify a more
exploratory approach to visualizing organ-level metabolic activity.
Their approach is also designed to facilitate doctor-doctor com-
munication through interactive closeups, whereby users can ad-
just view layout and composition to best fit their communication
agenda.

Summary. Organs function as the result of a chain of processes
that begin at the molecular level and extend through the cell and
tissue scales. While blood flow, heart, and brain function are espe-
cially well-covered in visualization research, the lungs and other
organs that we briefly highlighted in this section have received less
attention, although experts clearly benefit from visualization tools
to aid their exploratory and analytical questions. As in other scales,
we observe a comparative lack of visualization research oriented

to communication tasks. This represents an open opportunity for
future work. Furthermore, while visualizations of organ-scale pro-
cesses are often highly clinically-motivated, relatively limited re-
search investigates visual methods to aid practicing clinicians that
are usable in a time-crunched environment.

9. True Multiscale and Beyond

Cakmak et al. [CJS*21] define multiscale visualizations as those
that allow users to present, navigate and relate data across multiple
abstraction scales. In this section, we highlight examples and trends
of true multiscale visualization for physiology, where the spatial
and temporal representations and associated user tasks span three
or more scales within our taxonomy.

The Visible Human Project is one of the earliest multimodal data
initiatives to visualize the human body in its entirety. Although
the project mainly focuses on anatomical structures, one of its key
goals is to link structural image data with text-based physiolog-
ical data [Ack98]. Mathematical modeling initiatives to simulate
multiscale human physiology like HumMod [HBH*11] are a rich
resource for physiological models. The HumMod Browser, built
using empirical data from peer-reviewed physiology literature, re-
lies on grouped word clouds to allow experts to explore hierarchical
and causal relationships of whole body physiology [WCPH13].

Works that are similarly exploratory, but include spatial infor-
mation in their visualization, include Insley et al. [IGP11]. They
present a multiscale, multiphysics simulation spanning from cell
to organ scale of blood clot formation within a cerebral aneurysm.
Their method allows the visualization of individual red blood cells,
platelets, and solvent particles. It expands further to visualize large-
scale flow patterns with streamlines, enables the observation of
platelet aggregation along the aneurysm wall, and shows this phe-
nomenon in the context of the surrounding vasculature. Miller et
al. [MTT21] present a multiscale, although primarily structurally-
focused, brain map that spans from molecule to tissue scale. They
include functional information from spatial transcriptomics data
to describe pathological Tau proteins as well as signal propaga-
tion information. Leggio et al. [LLC*19] present MorphoNet, an
open-source online tool allowing users to interactively explore the
anatomy and dynamics of biological entities from molecule to
whole-organism scale. It furthermore allows for genetic data to be
overlaid onto these models. Primarily focused on developmental
processes, this tool uses 3D color-coded surface models and is tar-
geted at research and education, as shown in Fig. 20.

Qutub et al. [QMK*09], whose work we briefly discussed in
Sec. 7.1, present a review of multiscale modeling approaches, from
molecule to organ scale, for angiogenesis. Although many of these
models are multiscale, the visualization result is often not multi-
scale. An exception to this, although still limited and not inter-
active, includes Mac Gabhann et al.’s [MJP07] multiscale muscle
model. This model includes muscle fibers (muscle cells), the mi-
crovascular bed that supplies oxygen to these cells and tissues, and
the associated molecular pathways for angiogenesis.

While several truly multiscale models for the heart range from
the level of ion channel opening to the heart’s contractions over
a full cardiac cycle, the visualization output often is limited to an
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Figure 20: MorphoNet is an open-source online tool to explore and
communicate the anatomy and dynamics of biological entities from
imaging and genetic data [LLC*19]. Reproduced under Creative
Commons CC BY license.

organ-scale mesh representation. A heatmap then encodes electri-
cal activity mapped to the surface mesh and static, non-interactive
charts display the changes that occur at the cellular, molecular, or
tissue scales [GRW*00; SDP*14; ANL*16]. Gil et al. [GAB*19]
expand on this typical representation by incorporating myocardial
fibers, extracted from DTI data, with simulation data to understand
ventricular muscle tissue structure and connectivity. Chabiniok et
al. [CWH*16] provide a review of multiscale cardiac modeling
methods with an eye toward their integration for analysis in clinical
practice. This shows a clear interest in understanding such models
from the domain.

Some multiscale lung function models span from molecular to
organ scale, such as those by Burrowes et al. [BDS*13], but lack
integrated visualizations across all scales. As presented in Sec. 8.3,
Kim et al. [KBV*15] propose a partially integrated visualization
that captures the airflow dynamics of their model but lacks spatial-
ity across levels. Furthermore, the visualization, as in many of these
systems, does not allow for direct user interaction.

Multiscale models for brain function are becoming increasingly
common as computational power increases. Spanning from cell to
organ scale, such models capture the depolarization of a single neu-
ron, signal propagation through brain tissue, and the effects that this
signal has on brain function [ESC*12]. However, the visualizations
of these models are often limited in the scales they depict. For ex-
ample, in the Cognitive Computation Project, Ananthanaryanan et
al. [AESMO09] simulate a cat brain and visualize parts of the model
with a 2D heatmap that plots groups of neurons with similarly-
timed firing rates in a cortical area. A topographic plot provides
a detailed view of the first signal spike within each neuron group.

Increasing works target the developmental stages of entire organ-
isms through communication-oriented tasks that present physiol-
ogy for education and outreach. Sorger et al. [SMK*16] use visual
abstraction techniques to show, at a molecular level, the transitional
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stages of an HIV-virion. On a larger scale, the OpenWorm and its
various subprojects [SLP*18] aim to visualize and simulate multi-
scale anatomy and physiology of C. elegans with numerous tools
designed for public outreach. On a system-specific level, full-body
virtual anatomical models of the human musculoskeletal system are
a lively research topic, not only for domain experts [MLPE14] but
for visual effects animators as well [RMS20]. Multiscale modeling
approaches, such as those by Rzepecki et al. [RVV*14], propose to
combine multimodal structural, physiological, and biomechanical
data sources in an interactive viewer that scales from visualizations
of cartilage tissue porosity up to a simulation of human gait.

10. Discussion

This survey is intended as a guide for visualization researchers in-
terested in understanding common approaches and challenges to
visualizing physiology from a spatio-temporal and task-oriented
perspective. In this section, we discuss general themes along with
lessons learned.

vitaLITy. Our literature collection approach utilized traditional
search methods and leveraged new visual analysis tools from the
community to facilitate this process [NKWW21]. Using vitaLITy
was a huge help to identify holes in our search. Although vitaLITy
does not span the space of literature that we covered, its cover-
age of the visualization literature is comprehensive, and helped us
identify whether any holes in our search were due to issues with our
methodology or due to the lack of visualization literature for a given
topic. For example, using this combination of search methods, we
discovered that the spike in publications in 2010 could partly be
attributed to the rise in interest in the visualization of omics-related
data, with four surveys published on the topic that year [GOB*10;
NCD#*10; OGF*10a; OGF*10b] along with the running of funded
research projects like the Physiome, IllustraSound, and Physioll-
lustration projects in Europe during this time frame. Close to 40%
of the papers included in this survey were found using vitaL.ITy.
In many cases, we used papers found with this tool as seed pa-
pers in a standard search methodology. Using this combination of
tools helped give us confidence that our search methodology was
even, in spite of an apparent bias towards, e.g., organ-scale func-
tions. Through vitaLITy, we were able to sanity-check that these
are heavily-weighted topics in visualization for physiology.

Spatio-Temporal Distribution. Classifying literature along a
spatio-temporal axis uncovers a few interesting patterns in Fig. 5.
Most salient is the dark grouping of works related to organ func-
tion that is positioned symmetrically on both spatial and tempo-
ral axes. The data acquisition methods to capture these processes
(brain, heart, lung function, and blood flow) are well-established
with strong clinical motivations. It is not surprising to see an abun-
dance of work in this region, given these two factors.

Another, though less dark, region we observe ranges spatially
from large molecules to cellular substructures and occurs over min-
utes. This corresponds to the abundance of work where the key pro-
cess of interest in the visualization is understanding gene expres-
sion and where the majority of experimental methods, e.g., next-
generation sequencing and proteomics methods, lack the temporal
resolution to capture the active process of translation and transcrip-
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tion [DDM17]. These capture the result of the process, which oc-
curs typically in the span of minutes (for a single gene) [MIM*10].
This density of work reflects the comparatively recent develop-
ments in experimental methods for measuring gene expression,
which similarly accounts in large part for the increase in works
over the last few years, as we observe in Fig. 4. We expect to see a
continuing increase in such works.

The light region corresponding to a temporal resolution of a
few seconds (10! sec) represents a few possibilities. One relates
to the temporal resolution of experimental methods for gene ex-
pression: the majority of next-generation sequencing methods are,
at best, on the scale of minutes [DDM17]. Another reason is that,
while a number of processes bridge over this time range, for hu-
man physiology we found limited processes that are confined to this
range. Diffusion of molecules across a cell can occur in this time
span [MJM*10], but these are typically of interest when bundled
into the greater context of a molecular pathway or in the dynamics
of an entire cell, which encompass a larger time frame.

Smaller-scale processes, particularly at the molecular scale, have
a much broader potential temporal range than the organ-scale pro-
cesses our study examined. As many works in our survey allude
to, this broad temporal range is both an enormous challenge and
opportunity for visualization to aid experts in exploration and anal-
ysis of their data when events of interest are easily lost in temporal
noise. A major and related ongoing challenge is to integrate into
a visualization the larger spatial scales that build from, and are af-
fected by, the molecular process of interest. The discussion of the
differing breadth of time scales for the different spatial scales in-
troduces another point: while temporality generally increases with
biological complexity [SS14], living organisms are not bound to a
system based on powers of ten, but rather to a roughly 24h cycle
known as the circadian rhythm [MYS12]. This explains, in part,
the temporal ranges of functions such as gene expression and the
heartbeat and breath cycles that we observe in Fig. 5.

Cell & Tissue Function. We found comparatively few cell- and
tissue-scale visualization works. This reflects the history and trends
in the availability and technological advancements of the source
data. Data that can truly visualize dynamic, living cell processes on
the scale of molecule, cell, and tissue have only just recently be-
come available and accessible, and we see in the publication dates
that cell-related visualization works are on the rise. Computational
power is also steadily increasing to the point where whole-cell vi-
sualizations are becoming a reality, while the additional complexity
inherent in tissue-level physiology visualization is still a challenge.
Furthermore, many application domain approaches use only basic
visualization techniques, often simply reviewing microscopy imag-
ing data, to explore or quantify features or behaviors of interest.
This may show a lack of trust in abstraction that is, on some level,
unavoidable when processing data to visualize through other meth-
ods. Approaches that incorporate raw imaging data in multi-view
interactive tools alongside uncertainty quantification are useful di-
rections to continue investigation.

Imaging and Simulation Data Across Scales. Visual exploratory
and analytical tasks at the organ scale and, to a lesser degree, at
the tissue and cell scales are typically closely tied to imaging data.
Cases using a model at these scales usually compare or validate the

model against imaging data. Hence, visualization tasks at larger
scales are often to understand a given process from imaging data.
This is not necessarily the case in real-time visualization of dy-
namic processes at the molecular scale, and in many instances at
the cellular scale. Here, the visualization of a model often serves
as the primary means to understand a given process. As technol-
ogy improvements lead to higher resolution imaging methods, or if
simulations come to be seen as more accurate and trustworthy than
the imaging methods themselves, we may see this balance shift.

Task Distribution. Task distribution between exploration, analy-
sis, and communication differs slightly across all scales, with one
major trend consistent across all: communication-oriented visual-
ization works for physiology are limited relative to exploration-
or analysis-oriented works. Most visualization works we surveyed
have concrete expert collaboration partners with specific data types
and specific goals to understand these data. This works at a much
lower level than communication. There are some possible expla-
nations for this disparity in task distribution. One is that the data
being visualized is often cutting-edge, and the domain scientists
producing these data may not yet fully understand it themselves—
visualization is needed to discover and analyze, and the communi-
cation element comes after understanding. A second possibility re-
lates to data-related permissions. Patient and research subject data
is often heavily protected and, in many instances, may not allow
visualization beyond internal, domain-specific analytical use or re-
quire significant processing efforts to anonymize the data before
use. Lastly, visual communication of this type of data simply is
hard. The data are highly complex and multifaceted, and visual
communication requires a high degree of understanding on both
the side of the domain expert and the visualization researcher to
distill this information into a clear narrative.

Application Domain Adoption. Many of the visualization ap-
proaches discussed in this report have not fully permeated the appli-
cation domain. These are often highly-specific algorithms or tech-
niques, while widely-adopted approaches in the domain are of-
ten more generally applicable. Furthermore, such production-ready,
i.e., stable, solutions are continually maintained and designed for
ease of use. For example, in visualizing molecular dynamics, tools
such as VMD [HDS96] allow for easy visualization of simulations
through a movie-like series of time steps. Across all scales, vi-
sualization methods adopted in the domain remain relatively re-
stricted to the direct visualization of imaging data in a time-lapse
sequence, as in light microscopy or medical imaging, e.g., fMRI.
Techniques can extend into volumetric rendering with limited fea-
tures for exploration and analysis, with the option to create sur-
face meshes from these data. These visualization methods are eas-
ily available in tools like Amira [SWH*05], 3DSlicer, [FBK*12],
and ParaView [AGLO0S5]. Additionally, across all scales, basic visu-
alizations such as bar or scatter plots are common to identify the
frequency or distribution of physiological biomarkers under study.
These are often created in tools like Microsoft Excel. Such charts
are often limited in interactivity, e.g., only support filtering, and do
not apply across multiple views. Coordinated efforts with funding
agencies to establish initiatives for the deployment of advanced vi-
sualization techniques can enable broader access from the applica-
tion domains. Furthermore, researchers can consider opportunities
to develop advanced visualization approaches as plugins to existing
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domain tools rather than as stand-alone solutions. This is a possi-
bility to enable greater domain accessibility, and can mitigate the
resource limitations introduced by stand-alone tools.

11. Research Outlook

Physiology is a challenging, complex domain that visualization can
do much more to contribute to in the coming years. Increasingly
sophisticated modeling and data acquisition methods can capture
physiology at finer spatial and temporal resolutions but, in ex-
change, produce even higher volumes of complex data. In addi-
tion, the multiscale, multisystem, multidisciplinary nature of phys-
iology needs visualization to help bridge gaps, not only in explo-
ration and analysis of data between scientists but in communication
to a broader audience.

Numerous recent technological advances in imaging and experi-
mental methods pose exciting opportunities for visualization across
several scales. While light microscopy was previously limited to a
maximum resolution of 200 nm, Pulsed Interleaved MINIFLUX
with a standard microscope has increased this resolution to 1 nm,
allowing visualization of metabolites and other small molecules
in vivo [MSZ*20]. The boundaries of computed tomography have
been similarly expanded with hierarchical phase-contrast tomog-
raphy (HiP-CT) to allow true multiscale imaging from the organ
down to the cellular level [WTW#*21]. Other data have not received
much attention from the visualization community, such as the suite
of methods used to assess cell biomechanical forces [BGG*18].
Pioneering experimental methods to observe protein translation oc-
curring in real-time in living cells, such as nascent chain tracking
(NCT) [DDM17] are available, but visualization of these meth-
ods is limited. Expanding visualization research collaborations into
such areas to develop new methods for experts to engage with these
data is an enormous opportunity.

To answer questions left by gaps in systems biology and integra-
tive physiology, research is shifting to focus on the human organ-
ism as a complete integrated network. This considers not only the
scales that have been the primary focus of this report but also the
coordinated efforts between organ systems and sub-systems. The
study of the human organism as an integrated network is termed
network physiology, with a set of grand challenges in this new dis-
cipline published only recently [Iva21]. Visualization methods and
tools that can meet the exploratory, analytical, and communication
demands for this area of study are exciting opportunities.

Multiscale computational models are increasingly ubiquitous
with advancements in computational power and parallel process-
ing. However, while these multiscale models exist, corresponding
multiscale visualizations are often lacking or exist in unlinked, un-
integrated forms. This is another opportunity for visualization re-
search.

True multiscale and multisystem approaches necessitate multi-
disciplinary collaborations. A dearth of visual methods and tools
facilitate knowledge transfer between domains or communicate
physiology to the public. As the last two years of the pandemic have
demonstrated, clear and accurate visual communication of physiol-
ogy for public health is critical at all levels of society.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

12. Conclusion

This survey offers a broad overview of visualization trends and
opportunities for physiology and aims to provide a foundation
for discussion and future research directions in this area. From a
mixed-methods literature search approach using state-of-the-art vi-
sual analysis tools, we embed our discussion of these approaches in
a spatio-temporal context that focuses on the core tasks driving the
visualization: exploration, analysis, and communication. Our report
demonstrates an abundance of work at the organ scale, particularly
for hemodynamics. Molecular visualization, particularly related to
visual analysis and exploration of actors in molecular pathways, is
a growing research area driven by the advent of new technologies.
These new technologies hold immense promise for visualization
research that incorporates multiple data types to span the true mul-
tiscale nature of human physiology, from molecule to organ scale
and beyond.
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